Hacking a scale to test rocket motors


[David Steeman] sent us this project. He uses a consumer scale to measure rocket engine thrust. He wanted to be able to map the thrust curve of his homemade rocket motors to determine whether they are meeting the design goals. It does this by measuring the force applied by the rocket engine via a microcontroller that records it in a text file on a computer. He then analyzes this data in an Excel spreadsheet.

The sensors were harvested from a consumer scale while the rest of the electronics were built by hand. He’s using a PIC 18F2550 microcontroller which has a built in USB interface. He has breakdowns of each piece with detailed information on how it works as well as some nice pictures. There is also a list of future improvements that he would like to do such as increasing sample speed, integrating it with the ignition, and decreasing the physical size. Files for the schematic, firmware, and excel spreadsheet are available for download at the bottom of the page, so keep scrolling down.

1100 barrel paintball gun


[Adam] and [Jamie] from Mythbusters built a paintball gun with 1100 barrels as some graphics card marketing gimmick. It’s a formidable beast, but we’re sure it takes forever to prep.

[via Laughing Squid]

Tiny cubic PC


We’ve been watching the progress of the Space Cube since 2004, but PC Pro managed to get their hands on it first. Developed by the Shimafuji Corporation, it comes with 16 megabytes of flash memory and a version of Red Hat is run off a 1 gigabyte CompactFlash card. The design of the Space Cube is pretty minimal, but it’s got the basics down, from a USB port to a VGA output and a D-SUB RS232 input, and even an Ethernet port. The most interesting thing about it is the Space Wire port, which is a proprietary interface use by NASA, the ESA, and JAXA for outer space. Unfortunately for working hackers, this ingenious micro-computer will set you back about £1,500.

[via NOTCOT]

Solar powered ice maker

solar powered ice maker
Producing ice without electricity just got a lot easier thanks to these engineering students from San Jose State University. Their system uses solar heat to facilitate evaporation of a coolant. When the sun goes down and the coolant turns back to liquid, its temperature drops drastically due to extreme pressure differences. The unit can produce 14 pounds of ice per day with zero carbon footprint. It has no moving parts and an entirely sealed system, this should mean that the only maintenance necessary would be keeping the unit clean.
[via DVICE]