Breadboarding RAM

If you’ve ever wanted to dive in and take a look at how memory hardware is implemented here is a good example of how to implement some latching circuits with ether BJT or CMOS transistors. BJTs require biasing resistors which increases the complexity and power consumption when compared to CMOS. If power consumption isn’t an issue you could certainly make some really fast logic.

Most modern on chip RAM is made using SRAM because it only takes six transistors to implement(vs eight) and is pretty fast. When it comes to density DRAM can get one bit of storage by using a single transistor and capacitor(putting the capacitor underneath he transistor can save even more space). All that said, latches and flip flops are still a very useful (and common) tool when working with digital circuits.

Direct to PCB inkjet printing

[Rhys Goodwin] has been working on a system to print resist onto copper clad using an inkjet printer. This is a toner transfer alternative as it still uses toner, just not quite as you’d expect. The first step is to modify an inkjet printer, separating the carriage from the feed rollers in order to increase the clearance for the substrate. Instead of printing with etch resistant ink, as we’ve seen before, [Rhys] prints with black ink and then covers the board (ink still wet) in laser toner. Once there’s good adhesion he blows off the excess and bakes the board in a sandwich press, with spacers to keep the iron from touching the surface of the copper clad. This cooks the resist into a hard plastic layer and the board is ready for the acid. Watch him walk you through the process after the break.

[Rhys] uses the same method for silk screen, printing in red and baking the ink onto the substrate without added toner. This produces a nice looking board but it’s still quite a bit of work. It certainly sheds more light on the process than that laser-printer method from back in May. We hope you’ve been inspired by this and come up with the next innovation that makes this process easier.

[Read more...]

Pulito: The LEGO Roomba

When [Dave] installed hardwood flooring in his house, he needed a solution to help automate the monotonous task of routine sweeping. Rather than go out and buy one of the many existing automated sweep robots out there, he decided to use his passion for LEGO Robotics to design and build a NXT based Swifferbot he calls Pulito. His version implements all the important features such as object avoidance using bump sensors, an IR beacon used to automatically return to the charging station, and a photoresistor to monitor the charge of the battery. [Dave] also includes a nifty LEGO sensor multiplexor, allowing him to save on I/O ports, which is almost worth sharing by itself.

Videos after the break.

[Read more...]

Renesas RX Design Contest: $110K+ of Cash and Prizes

It seems that we have caught Design Contest Fever here at Hackaday. After covering some other design contests, and asking readers to send in more, we heard from a couple tippers about Renesas’ challenge. Like many of the other contests, entrants can submit their ideas, and possibly receive a free development board to get them started. Unlike the other contests though, Renesas board (possibly) free development board is everything but the kitchen sink. Designed with RTOS’s in mind, rather than the normal microcontroller tasks, this board has an astounding number of capabilities.

On top of the excellent development kit, the contest is also offering books, software, and cash prizes to the winners. So get out there, design something amazing, and make Hackaday proud.

Follow

Get every new post delivered to your Inbox.

Join 96,357 other followers