Sixty4Racer An 8×8 Game

[Pete] has a cool new tutorial creating a re-imagining of the Atari classic “River Raid” for the PIX-6T4 micro controller based game system. The PIX is a netduino on a larger board featuring 2 analog controllers, a speaker, an sd card and an 8×8 monochrome LED display. With a resolution that low, it may make the good ole VCS look like a 360, but there is still a lot to learn about making a game at this low of a level.

The tutorial [Pete] has put together covers concept, gameplay, progression goals, screen handling and a boat load of code to show how it all goes together. Though this is for a C# based system many of the basics apply to just about any system you can imagine. So if you’re looking to learn how to handle graphics in C, sprite animation, collision, or randomly putting levels together out of tile blocks then you should take a look.

Join us after the break for a quick video.

Continue reading “Sixty4Racer An 8×8 Game”

Analog Joypad For Your Retro PC

Part of the fun with old computers is playing some old school games, and while you could play them with a keyboard it is much more fun with a joystick. You can get old joysticks all day long on auction sites, but you have to watch out. Some are digital, which wont work for many games on many systems. Some were cheap to begin with and probably worn out, and many are flight sticks … ever play pac-man with a giant flight stick?

What I really wanted was a game pad like device for my 1986 Apple //c , using one of the modern thumbstick analog controllers. Using a thumbstick out of an old XBOX(1) controller, some generic parts from Radio Shack, and a little bit of effort , I ended up with exactly what I wanted.

Join us after the break and I will show you how to get there!

Continue reading “Analog Joypad For Your Retro PC”

Program A Microcontroller Over The Internet

If you’ve ever wanted to program a microcontroller “in the cloud,” you might want to head over to Inventor Town, an online IDE that allows you to write and compile firmware for the MSP430 series of microcontrollers.

After logging in with your Google account, you’re presented with a ‘My Projects’ page. From there, you can make as many projects as you like for the MSP430x2231 or ~x2211 microcontrollers. The online editor has the vital keyword highlighting feature, but sadly not many of the more advanced text editor features, like a red underlined syntax errors. After you’ve written your code, press the compile button, download your .HEX file and upload to your board.

We’re surprised we haven’t seen something like this before. To us, this seems like the ideal basis for a github-style microcontroller code-sharing website. Any enterprising ATtiny fans want to take a crack at this one?

Thanks [Rob] for sending this one in.

[Sprite_tm]’s Three-component FM Transmitter

When the Regency TR-1 transistor radio came out onto the market in the 1950s, it was hailed as a modern marvel of microelectronics. With only four transistors and a handful of other components, the TR-1 was a wonder of modern engineering. [Sprite_tm] may have those old-timers beat, though. He built an FM transmitter with the lowest parts count of any transmitter ever.

Like most of [Sprite_tm]’s builds, it’s an unimaginably clever piece of work. [Sprite] overclocked the internal RC oscillator of an ATtiny45 to 24 MHz. After realizing the PLL running at four times the frequency of the oscillator was right in the middle of the FM band, he set about designing a tiny FM transmitter.

[Sprite_tm] remembered his work on MONOTONE and made a short song for hit ATtiny. The firmware for the build takes the notes from his song and varies the 96 MHz PLL frequency a tiny bit, thereby serving as a tiny FM transmitter.

Does it work? Well, if you want to compare it to a Mister Microphone, the range is incredibly limited. That being said it works. It’s an FM transmitter built out of a microcontroller and a battery, and that’s very impressive. Check out [Sprite_tm]’s demo after the break.

Continue reading “[Sprite_tm]’s Three-component FM Transmitter”

Jam A Remote Helicopter

The Syma S107 IR is a popular little remote controlled helicopter. When a friend of [Michael]’s started flying one around the office he decided to try and jam the signal, creating a no fly zone. Luckily some people on the internet have already decoded the IR signals used by the flying menace. From there, a quick browsing of Mouser to source some LEDs, and to whip up some code for a TI MSP430 was all that was left.

The software on the micro controller is set to broadcast a “thrust off” signal, but [Michael] admits he is not 100% sure if the helicopter is actually receiving that, or if the signal from the no fly zone is mixing with the remote’s signal, causing garbage to be received. Either way when the helicopter gets in range of the no fly zone pad it drops from the air.

Things didn’t go perfectly though, overestimating the current capabilities of the MSP was causing the micro controller to reset and crash the debugger. But a simple rearrangement of how the signals are sent quickly solved this problem.

Join us after the break for a quick video.

Continue reading “Jam A Remote Helicopter”

Real-time Depth Smoothing For The Kinect

[Karl] set out to improve the depth image that the Kinect camera is able to feed into a computer. He’s come up with a pre-processing package which smooths the depth data in real-time.

There are a few problems here, one is that the Kinect has a fairly low resolution, it is also depth limited to a range of about 8 meters from the device (an issue we hadn’t considered when looking at Kinect-based mapping solutions). But the drawbacks of those shortcomings can be mitigated by improving the data that it does collect. [Karl’s] approach is twofold: pixel filtering, and averaging of movement.

The pixel filtering works with the depth data to help clarify the outlines of objects. Weighted moving average is used to help reduce the amount of flickering areas rendered from frame to frame. [Karl] included a nice GUI with the code which lets you tweak the filter settings until they’re just right. See a demo of that interface in the clip after the break and let us know what you might use this for by leaving a comment.

Continue reading “Real-time Depth Smoothing For The Kinect”

Rotary Phone-light-amp Could Be Filed Under Bizarre

[Samimy’s] latest project is a little strange, but one man’s weird is another man’s wonderful so we’re not about to start criticizing his work. Nope, we’re here to praise the fact that his rotary phone turned reading light and audio amp is very well constructed.

He started by removing the phone housing. Those old enough to have used one of these devices will remember their bulk, and there’s a lot of unused space in both the handset and body housing. [Samimy] started by removing the speaker and microphone from the handset, and drilling a ring of holes to receive white LEDs. The circuit was wired so that lifting the handset turns on the lights.

But he didn’t stop there. A set of speakers and the audio amplifier circuitry from an old tape deck are also hiding inside the base of the phone. If you look closely in the image above you can see that he’s connected his cellphone and is listening to some tunes through the antique hardware. Take a gander at the video after the break to see construction and use of the project.

Continue reading “Rotary Phone-light-amp Could Be Filed Under Bizarre”