Using old phones as an intercom in your VW bus (or anywhere else)

In case you haven’t noticed from my many comments on the subject, I drive a VW bus. It is a 1976 Westfalia camper with sage green paint and green plaid upholstery. I absolutely love it and so does the rest of my family. We go for drives in the country as well as camping regularly. We have found that the kids have a hard time communicating with us while we’re going higher speeds. These things aren’t the quietest automobiles in the world. Pushing this bread loaf shaped hunk of steel down the road with an engine that might top out at 75hp results in wind noise, engine noise, and of course, vibration.

I decided to employ a really old hack to put two functional telephones in the bus so my kids can talk to my wife (or whoever the passenger is) without screaming quite so loud. This hack is extremely easy, fairly cheap, and can be done in just a few minutes. The result is a functional intercom that you could use pretty much anywhere!

[Read more...]

A quick kludge to view the transit of Venus

[Justin] is a bit of an astronomy geek, but that doesn’t mean he’s always prepared for celestial phenomena. When he realized the May 20th annular eclipse was only a few days away, [Justin] dropped everything, built a pinhole solar viewer, and drove three hours for the best view of the eclipse. He learned something watching the eclipse; these sort of things sneak up on you, and you really need to plan ahead if you want to truly enjoy the music of the celestial spheres. After the eclipse, [Justin] set to work building a filter to watch a Venusian eclipse with his telescope.

If [Justin] pointed his 8 inch Schmidt–Cassegrain directly at the sun, he would most likely damage the optics in his ‘scope, burn several retinas, and other very, very bad things. The best way to view the Sun with a telescope is with an expensive Hydrogen alpha or a general solar filter, but these are expensive and the clock was rapidly ticking down to the transit of Venus. After reading that blocking most of the light from coming into the ‘scope, [Justin] built an aperature reducer out of a few bits of foam board, foil, and dark fleece.

How did viewing the transit with a telescope turn out? Well, if you don’t compare [Justin]‘s pictures to the multi-million dollar toys NASA and astronomers have, pretty good. It’s a very good job considering the entire foam-core aperture reducer was built in the course of an evening.

While it may be a little early to be planning for the next Venusian transit in the year 2117, there will be a transit of Mercury on May 9, 2016. All [Justin] has to do is remember when it will happen.

Pocketwatch retrofit takes input from accelerometer

A friend of [CNLohr's] used the mechanism from an old pocket watch in an art piece, but left him with the enclosure. It’s an interesting looking object that feels great in your hand so he decided to fill it with his own electronics, thereby giving it a new life. He’s showing off an early version of the hardware in the video, but plans to send off another version of the board soon to add a few features.

You can see that the round PCB is small enough to fit in the space vacated by the original hardware. The ribbon cable is used to connect to the programmer and we think it’s also the power source for this demonstration. There’s a small Densitron display that’s reading out hex values from the accelerometer. Many of these mems chip (you can learn how they work from this post) include a hardware tap detector. This meant you can tap your finger on the device and the chip will signal an input to whatever chip is attached to it. That’s a great option for user input, and it’s what [CNLohr] chose as the select button here. He tilts the watch to one side, then taps to turn on the LED. That’s all for now, but we like the promise it shows and can’t wait for updates!

[Read more...]

Building a 1980s microcomputer with a Parallax Propeller

The folks over at Gadget Gangster put up an Instructable to build a retro 80s 8-bit microcomputer. Even though they’re using modern components, it still hearkens back to a time when 10 year olds learned 6502 assembly, PEEKing and POKEing was the best way to program, and using a mouse was a novelty.

The build uses a Parallax Propeller dev board to provide an amazing amount of horsepower for a simple microcontroller. After hooking the Propeller up to a TV via an RCA jack and adding an infrared keyboard, Gadget Gangster had a simple computer that can load programs off an SD card.

Because a microcomputer is useless if you can’t program it, Gadget Ganster ported BASIC  to the Propeller. With VGA and sound output, along with the ability to add a PS/2 keyboard and Wii controller, this modern take on a classic paradigm is more powerful than dozens of Commodore 64s.

As a small aside, we don’t see nearly enough builds using a Propeller. A parallel processing microcontroller having 10 times the computational ability of a low-end ARM processor is interesting to say the least; we’re honestly puzzled by the dearth of Propeller projects. If you’ve got a Propeller project, send it into the tip line.

555 business card

After checking out a few beautiful business cards while working at his engineering co-op, [Cody] realized he would soon need his own. Instead of a card with subtle off-white coloring, a tasteful thickness to it, and even a watermark, [Cody] decided to make a 555 timer business card.

[Cody] started his business card project by going through a few design iterations while figuring out what he wanted his business card to do. There were a few designs not chosen – one with a microcontroller, a few with just LEDs, and some with no circuitry at all. After checking out a few project from the EEV blog 555 contest, [Cody] decided to go with a simple 555 timer circuit.

Being a business card, [Cody] kept the circuit very simple; it’s just a 555, phototransistor, and a few SMD LEDs. When a 9 Volt battery is placed on the contact points of the card, the 555 lights up the LEDs. When a laser is shone on the phototransistor, the LEDs start blinking. A very neat and sufficiently interactive circuit that is perfect for keeping component costs down.

After the break you can check out [Cody]‘s business card in action.

[Read more...]

WISP adds wifi to the Internet of things

The guys over at embdSocial sent in a project they’ve been working on for a while. It’s a small wifi module for an Arduino or other microcontroller called Wisp. Unlike the many, many other wifi breakout boards we’ve seen, the Wisp has a truly incredible amount of potential. With an API that allows an Arduino to post to Twitter, sending text messages, and even has remote admin capabilities, the embedSocial team came up with something really cool.

We’ve seen our fair share of projects that use wifi, but the Wisp is amazingly clever as to how projects can be controlled. Each Wisp is administered through the Internet. Once a Wisp is registered to your online embdSocial account you can upload new code without ever physically connecting a microcontroller to your computer.

To demonstrate the remote administration capabilities of the Wisp, the embdSocial guys put an Arduino and Wisp inside an electrical junction box. With their setup, the guys have the simplest and smallest Internet connected power outlet we’ve ever seen.

After the break, you can see a demo of a Wisp opening a garage door and a remotely operated, web enabled airsoft turret. We’re loving that the turret sends video from the gun to any device on the Internet, and it’s impressive that [Chris] and [Art] whipped up both these projects in a single weekend. There’s also a Kickstarter for the Wisp, so here’s to hoping we can pick one of these up soon.

[Read more...]

KMODDL: A mechanism maker’s dream site.

Computers are relatively new still, but we’ve had mechanics for a very long time. KMODDL  keeps us from reinventing the wheel. It contains collections of mechanisms with descriptions, pictures, and even videos. We were working on a arbalest design not too long ago, and we were having trouble coming up with a clever ratchet design for one of the parts. We spent a few moments in KMODDL looking through the ratchet section of the Reuleaux collection, and  soon after we had the basic building blocks of our design. Sure there are books you could buy that do a similar thing, but KMODDL is completely free, very in depth, and easier to search. Plus, with a useful tool like this you might not even have to take apart all your appliances anymore to see how they work. My first sewing machine might have lived a longer life had I seen this first. Anyone know of more resources like this?