Only you can kick a child’s balls into space

We had a lot of fun with that title. Of course when you’re talking about launching a thousand ping pong balls into space there’s no end to the puns which can be made. But this is actually a fantastic initiative to get people of all ages excited about science and near-space experiments. [John Powell] offers school children the opportunity to send an experiment into space. He’s Kickstarting the next launch, which is scheduled to take place in September. This way each entrant can fly their project for free, then get the results and a certificate back once the weather-balloon-based hardware is recovered.

There is one size restriction for the program. Each experiment must fit inside of a ping pong ball. But you’ll be surprised what can be accomplished. [John] reports that the most simple, yet interesting project is to place a small marshmallow inside the ball. As it rises through the atmosphere it will grow to fill the entire ball, then be freeze-dried by the the extreme temperatures. Some are not so low-tech. There’s an image of a tiny PCB holding a DS1337 and some sensors. It’s an atmospheric data logger that will provide plenty of information to analyze upon its return.

[via Hacked Gadgets]

Decoding NOAA weather radio with an Arduino

The National Oceanic and Atmospheric Administration is responsible for broadcasting the signals used in weather radios. They use a protocol called Specific Area Message Encoding (SAME) and [Ray Dees] recently published an Arduino library that lets you decode the SAME message packets.

He doesn’t provide a method of tuning the radio signal, but at first you can use the audio samples he points to. The actual broadcasts happen on one of seven frequencies between 162.400 MHz and 162.550 MHz but the tones are also broadcast on TV and Radio alerts. Once you have the audio it is fed into a pair of XR-2211 Tone decoders. This provides just three interface pins for the Arduino to watch.

The annoying noise that grabs your attention at the beginning of a weather alert, or test of the alert system is actually what the SAME data packets sound like. From those tones this system will be able to decode what type of alert is being issued, and the geographic locations it affects. If you interested in more info about SAME head over to the Wikipedia article on the topic.

Bending a home security control panel to your will

Does your home have a security system but you don’t subscribe to the monitoring service to make it work? Rip that baby off of the wall and do something with it, or just build your own system around it. If you have a DSC PC1500RK control panel [CaitSith2] shows us how easy it is to control the buttons, LEDs, and buzzer. If you’ve got a different model this is still a good jumping off point to start your own reverse engineering.

There are only four connections that need to be made. [CaitSith2] is using an Arduino for the demonstration. He connected the red wire to voltage, the black wire to ground, the yellow wire (clock) to digital pin 3 and the green wire (data) to digital pin 2. A communication cycle starts by setting the data line high, then clocking out eight bits to capture keypresses. 16-bits are then clocked in to set the LEDs and drive the buzzer. This is shown in the video after the break as well as documented in his sample code. We’ve embedded the sketch after the break to preserve it in case the pastebin code goes missing in the future.

[Read more...]

Building a coffee roaster from junk

[Rxdtxd] has tried his hand at roasting coffee beans in a frying pan. It works but he can only roast small batches at once. What he really needed was a large-scale roaster that would have no problem with a few pounds of the green beans all at once. He ended up building this large-scale coffee roaster out of junk parts.

The vessel which holds the beans is the drum from a top-loading washing machine. It was headed for the junk pile, but the fully-enclosed drum is perfect for this purpose. After acquiring it [Rxdtxd] set out welding a frame that would hold either side by the pivot points. He used a geared motor to automate the process. The output shaft on the gear box is meant to drive a chain, but he just welded some pieces onto the gear to use as a coupling.

In the picture above he’s giving the roaster a thorough testing with about ten pounds of beans. A portable gas stove placed below the rotating drum supplies the heat. After the beans have reached the desired darkness he pours them out into a large skillet to cool. Take a peek at the roasting action in the clip after the break.

[Read more...]

Lab robot demonstrates mastery of culturing and other tasks

Lab work is a pretty good job. But sometimes being around hazardous samples, or completing tedious and repetitive tasks leave scientists looking for a different way. This robot seems to know its way around a lab. The folks behind it claim it’s more precise than veteran lab technicians, and that it can complete the tasks in half the time.

After watching the video (embedded after the jump) we’re quite impressed. The dexterity shown by the system illustrates care down to the tiniest of details. This is because everything the robot works with has been passed through a 3D scanner in order to establish a virtual model. This way the training is done in the computer. The robot can be run though any number of scenarios before it actually starts working with infectious materials like the influenza virus and other not-so-nice microbes.

What we’d really like to know is what kind of visual feedback system is being used.

[Read more...]

Melting plastic powder together, one layer at a time

Here’s an interesting development in the world of 3D printers: A rapid prototyping machine that melts plastic powder together to create objects with extremely good resolution

The Blueprinter works by drawing a 0.1 mm thick layer of plastic powder over the build platform. After that, a very hot needle-shaped probe melts the plastic together. This process continues at a rate of 10mm an hour on the z axis, and a very precise plastic model eventually appears in the powder.

There is no price ( or solid release date ) for the Blueprinter, but this 3ders.org article from earlier this year tells us the price for the machine will be €9,995, with a material cost of €49 per kg. Pricey, yes, but seeing as how the RepRap community already has the techniques behind melting plastic down pat, it might now be too hard to build your own plastic sintering printer.

If you know of any current projects or builds that are trying to emulate this plastic powder melting technique, drop us a note on the tip line. We’d love to see a version of this printer up and running. Until then, you can check out the render showing a rendered Blueprinter in action, along with a demo of a plastic clip printed on this sintering printer.

[Read more...]

Writing on LEDs with a laser pointer

After [Ch00f] got his hands on an 8×8 LED display, he didn’t make a 64-pixel video game or VU meter. He made a laser doodler, allowing him to draw on this display with only a laser pointer.

Using LEDs as light sensors is nothing new; [Forrest Mims III] discovered that LEDs can also detect light way back in the late 60s. [Ch00f] played around with this concept before creating a circuit that uses an LED as both a light emitter and sensor that reacts to the ambient brightness.

[Ch00f]‘s laser doodler takes this phenomena and applies it to an Adafruit bicolor LED matrix. When a light shines on an individual pixel in the display, the ATMega48 senses the current and turns that pixel on. Since this these pixels have two colors, [Ch00f] used a latch circuit and a button to cycle between what color the ‘Mega writes to the display.

In the video after the break, [Ch00f] shows off his display by having the LEDs light up in response to a laser pointer. It may be a bit small, but we can see a lot of potential for something like this as a gigantic art installation.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,711 other followers