Blood glucose monitor data pushed to smart watch

image

[Don] uses a Continuous Glucose Monitor to stay on top of his diabetes. It means carrying around an expensive and fragile device which acts as the readout. He’s an active guy and doesn’t want to destroy the thing while dirt biking or kick boxing so he’s been trying to use a TI Chronos smart watch as a display alternative.

As you can see he has already made some headway. This image shows the watch displaying data from the device. Unfortunately he’s depending on a PC to interface with the CGM display, then pushing it to the watch. He may try moving to a Raspberry Pi to help make this more mobile. This way the sensitive hardware could be tucked safely in a case inside a backpack while the watch shows his current glucose levels. We’d also love to see an embedded solution that would emulate the communications the PC is using to harvest the data. If you’ve got any suggestions in this area we’re sure that [Don] would appreciate the help.

WS2811 can be addressed at 800kHz using a 8MHz clock

ws2811-running-at-8mhz

Timing is everything and that’s why most communication protocols require a very accurate clock source. The WS2811 LED strip controllers are no different. But [Danny] figured out a way to drive them reliably with an 8MHz clock source.

The WS2811 has become one of the most popular controllers for RGB pixels and strips alike. We’ve seen several hacks used to address them, including the 16MHz AVR technique that inspired [Danny] to take on this project. He planned to use that library but the 25-day shipping time for a 16MHz crystal drove home to invent a way to use the internal oscillator instead.

The gist of the hack is that he wrote assembly code to handle pairs of binary bit values. With a code block for each of the four possible combinations in hand he had to find a way to craft the conditional jumps to preserve accurate timing. After hitting the wall trying to solve this puzzle by hand he wrote a C++ program to solve it for home. The proof is in this video which shows one chip driving multiple Larson scanners on a single strip.

[Read more...]

Adding night vision to the Raspberry Pi camera

IR

After months of promises, the Raspberry Pi camera is finally heading out to hackers and makers across the world. Of course the first build with the Pi cam to grace the pages of Hackaday would be removing the IR filter, and it just so happens [Gary] and his crew at the Reading hackerspace are the first to do just that.

As [Gary] shows in his video, the process of removing the Pi cam’s IR filter is extremely fiddly.  Getting the filter out of the camera involves removing the sensor, gently cutting it open with a scalpel, and finally gluing the whole thing back together with a tiny bit of superglue. Not for the faint of heart, and certainly not for anyone without a halfway decent bench microscope.

If you’re looking for a Raspberry Pi-powered security camera, game camera, or something for an astronomy application, this is the way to make it happen. You might want to be careful when removing the IR filter; [Gary] broke one camera on their first attempt. They got it to work, though, and the picture quality looks pretty good, as seen in the videos below.

[Read more...]

Book Review: The Good Life Lab

the-good-life-lab

Stop whatever you’re doing and get this book. I’ve just finished reading it and I have to say that [Wendy] and [Mikey] could easily be the poster children for modern day hacking, and this book could be the manual for a life built on hacking.

When I visited [Wendy] and [Mikey] last year I was blown away.  Their little homestead was a veritable smorgasbord of hacks. Everywhere I looked, things were cobbled together, modified, repaired, and improved. There wasn’t a single piece of their lives that wasn’t somehow improved by their efforts to play an active role in their own living.

That sounds a bit cheesy I know. We all play an active role in our lives right? Sure. But what they have done is created a hacker’s homestead. My projects tend to live on my workbench, occasionally poking into my daily life, but they went were there was virtually nothing and hacked together everything they found they needed.  Their life is their workbench.

[Read more...]

Moostar — fortune telling moose knock-off of Zoltar

zoltare-the-fortune-telling-moose

Meet Moostar, the fortune-telling Moose inspired by Zoltar. You remember Zoltar, the coin operated fortune-teller who made [Tom Hanks] a rich movie star? Maybe you didn’t see that flick, but [Sketchsk3tch] did and he pulled this show piece together for a company-wide conference with relative ease.

If you’re good at choosing parts for your projects it makes things a lot simpler. He started with a singing Christmas moose, a mini plasma ball to act as the crystal ball, and somehow came across a collector’s basketball case which was the perfect size for the enclosure.

The electronics also came together remarkably well. He uses a thermal printer to spit out the fortunes — which are actually security tips for employees since that’s the dcpartment he works in. The coin acceptor is a Sparkfun part and he tried two ready made solutions to make the moose talk. The first is seen below and uses pre-recorded messages played by an Arduino Wave shield. This was improved upon by using an EMIC2 text-to-speech module that really opens up the moose’s range of chatter.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 92,354 other followers