A facelift for the view out your livingroom window

livingroom-view-facelift

[Ken Kawamoto] turned the rather bland view from his livingroom into that of some high-priced real estate. It only works at night, which is going to seem odd since the image above shows a daytime scene. But it’s still a pretty sweet concept.

The video below shows the actual view from his window. We don’t think it’s all that bad (we once lived in a ground-level apartment looking out on a parking lot… yuck!). But the view of the Abbey of St. Étienne in Caen, France seen above is much better. He simply put a projector on his balcony and closed the light-colored blinds. So far he has to bring it in after each use, but we see this as more of a thing to use only when entertaining anyway.

We’ve seen a few other attempts over the years at hacking your view. Here’s one that adds fake windows using LCD screens. The thing that makes that one work is the ability of the system to track the viewer and change the perspective accordingly.

Continue reading “A facelift for the view out your livingroom window”

Retrotechtacular: The 10-year anniversary of plastic

retrotechtacular-plastic-ten-year-anniversary

This footage called Industry on Parade is a unique look back at the golden age of plastics. We also value the footage as a look at America’s manufacturing sector at its height.

We remember a middle-school teacher recalling his father — who was a research scientist working at Dow — bringing home a pair of discs for him to play with. His first ever encounter with plastic. Here we see a snapshot ten years after plastic manufacturing went mainstream. It starts off with a tour of an injection-molding factory. The screenshot seen above is from the second vignette which tours a production line for naval ship models which will be used to train Navy personnel and as props for strategic planning maps. The film wraps up with the production of plastic fabrics starting with raw materials and ending with synthetic bug screen.

Just to prove it’s an authentic blast from the past, hang in there for the last two minutes when you get an anti-communism PSA. Classic.

Continue reading “Retrotechtacular: The 10-year anniversary of plastic”

Milled water bottle rocket launcher pushes plastic containers to their limit

water-bottle-rocket-launcher

Building this launcher is simple if you already have a mill. It does a remarkable job of pressurizing and launching soda bottles which are partially filled with water. The main component of this is a triple-gasket stopper with a quick release.

The problem with a lot of these water bottle rocket projects is that they leak where the bottle meets the launcher. In most cases this is a good thing as it’s almost impossible to build up enough pressure to cause the bottle to fail. This system has no such built-in safety mechanism, which is why the test launch below is conducted from a safe distance. After seating the partially filled bottle on the launch platform it’s pressurized to around 100 PSI at which point a yank on the string lets it fly.

Most of the time we look on these as casual projects. But we figure this one is much more suited for a rocket club or hackerspace event.

Continue reading “Milled water bottle rocket launcher pushes plastic containers to their limit”

Building a ‘high-end’ USB audio DAC

As [Jan-Erik] had already built a simple USB connected Digital-to-Analog Converter (DAC), he decided to make the high-end version of it.

The prototype you see in the picture above is based on:

  • the PCM2707C from Texas Instruments which takes care of the USB communication and outputs I2S audio data
  • the PCM1794A, a 132dB SNR 24-bit 192kHz DAC which receives I2S protocol
  • the OPA4134, a high performance audio operational amplifier

The on-board +3.3V and -5V voltages are generated by inductor-less power supplies. As [Jan-Erik] mentions in his write-up, the ‘high-end’ was put between single quotes because the PCB is single sided and uses through hole passive components. The board was designed using Kicad, etched by himself and put in a machined enclosure. All the production files can be downloaded from his website so you may produce it within a day.

CC3000 WiFi driver for .NET Micros

CC3000

The Netduino and other .NET Micro boards don’t seem to get much love, but that doesn’t mean they’re not able to use one of the coolest chips we’ve seen in a while. [Valkyrie] has written a driver for TI’s new CC3000 all-in-one WiFi chip, giving any .NET micro device a very small and very cheap WiFi connection.

A while back, [Chris Magagna] created a TI CC3000 library for the Arduino. [Valkyrie] fell out of his chair when he saw that post, as it meant the .NET Micro devices such as the Netduino could finally use this device. With a TI Launchpad and a logic analyzer, [Valkyrie] recorded all the SPI commands and responses eventually reconstructing the entire library.

As for how useful this is without any hardware, There’s already a CC3000 Gadgeteer module available from GHI Electronics.

Spoofing WiFi AP based geolocation

[Pierre Dandumont] just finished up a little project that will give Google Maps’ location feature a run for its money. It’s a technique that spoofs WiFi networks in order to relocate the positional data reported via WiFi networks.

He starts with an explanation of the different ways modern devices acquire location data. GPS is the obvious, and mobile network triangulation is pretty well know. But using WiFi networks may be a new trick for you. We’re not 100% certain but we think Google is able to look up location data based on known IP addresses for WiFi access points (this would be a good comments discussion). To trick the system all you have to do is feed some captured AP data into the computer before Google Maps tried to lock onto a location. The video after the break shows Maps with the legit location displayed. After running a quick script whose output is shown above the map position is changed to the spoofed location.

Continue reading “Spoofing WiFi AP based geolocation”

Stopping a hackerspace from rusting away

steel

The illutron hackerspace in Copenhagen makes their home on a barge sitting in port. Not only is this awesome, but the members of the hackerspace also worry about corrosion to their beloved fablab. In an effort to ally some fears about rust slowly eating through the hull, [Dzl] has rigged up a cathodic protection system for their hull, essentially preserving their barge at the expense of a few old steel rails.

Cathodic protection systems are able to protect the steel of a ship’s hull by offering up a sacrificial anode made of aluminum or zinc. This can be done by either attaching a sacrificial anode directly to the hull, or with a more complex system that connects both the cathode (the ship) and the anode (an engine block) to a DC power source.

[Dzl] is converting mains voltage down to 12 VDC, then further lowering the voltage with an Arduino-controlled buck converter. The control panel allows for adjustments in the voltage, as well as a nice uptime meter to make sure it’s running.

The results are fairly impressive; in the above pic, the right piece of steel was electrically connected to the barge’s hull, while the left piece was free to rust in the North Sea. That’s only two days worth of corrosion there.