Bicycle Generator For Emergency Electricity

hackettBikeGenerator

[Hackett’s] back at it, this time with some practical advice for the next power outage to hit your city: why not prepare for the worst by building your own bike generator? You’ll no doubt recall that hurricane Sandy devastated New York City’s grid, even flooding substations and causing massive explosions. [Hackett] experienced the Sandy outages first-hand, and knows the value of having this simple build ready to roll.

The project uses a permanent magnet DC motor (around 250 watts), which you can find in electric wheelchairs or other mobility scooters. His setup’s gear reduction spins the motor 50 times for each revolution of the bike wheel. The apparatus [Hackett] built to press-fit the wheel to the motor’s spindle is particularly clever: a threaded rod adjusts the position of the motor, which is bolted onto a hinged platform, with the other part of the hinge welded to a larger frame that supports the bike wheel.

The motor is connected to a home-built charge controller based on Mike Davis’s design, which monitors the deep-cycle batteries and both kills the charge when it’s full as well as turns charging back on after it’s reached a set level of discharge. The rest is gravy: with the deep cycle battery connected to a power inverter, [Hackett] can plug in and keep phones charged, music playing, and even (some of) the lights on. If you’re a fan of [Hackett’s] straightforward, practical presentation style, check out his tripod build and his demonstration of stripping pipes of their galvanization.

Continue reading “Bicycle Generator For Emergency Electricity”

Ask Hackaday: Does Project Ara Solve The Phonebloks’ Problems?

Our tips line is blowing up again, this time directing us to Motorola’s Project Ara: a phone with modular components that plug into a base “endoskeleton.” If you missed the news coverage strewn across the web and you are doing a double-take, that’s because Project Ara is frighteningly similar to the (presumed vaporware) Phonebloks concept from a few weeks ago. Phonebloks was the subject of our last “Ask Hackaday” article, generating hundreds of comments ranging from those defending the concept to those furiously opposed to it.

There’s a conspiracy theory circulating that suggests Motorola released the Phonebloks concept as a viral marketing scheme to generate hype before revealing the official product line. We suspect it’s a bit less conniving. As [jorde] explained on Hacker News, an Israeli startup, Modu, had developed a similar modular cell phone several years ago, and Google bought the patents in May of 2011. A few months later, Google bought something else: Motorola. It seems likely that Project Ara is merely a resurrected and revised Modu, and Motorola conveniently announced it in the wake of Phonebloks’ popularity. Regardless, Motorola has announced that they have partnered with Phonebloks’ creator Dave Hakkens .

So what’s different? Phonebloks was met with cries of “vaporware!” and fervent arguments raising concerns about unavoidable hardware limitations. Motorola claims their goal is:

to do for hardware what the Android platform has done for software: create a vibrant third-party developer ecosystem, lower the barriers to entry, increase the pace of innovation, and substantially compress development timelines.

Unlike Project Ara, Phonebloks didn’t consider open-source hardware (Wayback Machine link), and Motorola makes an interesting argument here: that advances in 3D printing indicate an evolving “open hardware ecosystem,” and the next era of phone development may rest in the hands of your average hacker or a small startup company. Some speculate that the Ara will be similar to the relationship between a PC and its peripherals: Motorola provides the essential guts while giving you some slots for attaching additional components. Let us know in the comments what you think about Project Ara: is it just more vaporware, or a watered-down but plausible alternative to Phonebloks?  And, perhaps most important: do you, as a hacker, want a phone that supports open hardware and lets you plug in “peripherals?” The Phonebloks website has since changed to reflect the partnership with Motorola, and includes a new video that you can watch below.

Continue reading “Ask Hackaday: Does Project Ara Solve The Phonebloks’ Problems?”

PropVario, A Talking Variometer/Altimeter For RC Sailplanes

propvario

Lift. For a sailplane pilot it means the difference between a nice relaxing flight, or searching for an open area to land. Finding lift isn’t always easy though. This is especially true when the sailplane is hundreds of meters above a pilot whose feet are planted firmly on the ground. That’s why [Tharkun] created PropVario. PropVario is a combination variometer and altimeter for Radio Controlled sailplanes. We’ve seen a few variometers in the past, most often for full-scale sailplane or hang glider pilots. Almost every full-scale plane has a variometer as part of its suite of gauges – usually called a rate of climb or vertical speed indicator.

R/C pilots don’t have the luxury of looking at a gauge while flying though. At altitude even large 2 meter gliders can appear to the naked eye as no more than a dot. It would be somewhat embarrassing to lose sight of your glider because you were checking gauges. The solution is actually simple. A varying audio tone indicates the rate of climb of the plane. Higher pitched tones mean the plane is going up. Lower pitched tones mean the plane is descending. This system, coupled with a simple radio transmitter, has been in use by R/C sailplane pilots for years.

Continue reading “PropVario, A Talking Variometer/Altimeter For RC Sailplanes”

LED Magic Staff Just In Time For Halloween!

[Dave]’s been working pretty hard on his Arduino driven, LED-lit, magical staff for the past few months, and now it’s finally coming together.

He’s using 6 LED strips that contain 55 LEDs each — at full brightness the staff can suck up an impressive 20A @ 5V! To power it, he’s equipped the staff with 8 NiMH C size batteries (5000mAh @ 1.5V). This works out to about 15-20 minutes of runtime at full power (255, 255, 255, LED values) — to counter this he usually runs a sparkly LED algorithm that lasts much longer. Besides, at full power it’s really quite blinding.

The staff is controlled by an Arduino Uno and currently only has two different modes: random and full brightness. Not to worry though, he’s planning on adding a sound sensor to turn it into an equalizer, a shock sensor to give it a cool ripple effect while walking, and maybe a few other interesting patterns!

Stick around after the break to see the first test video!

Continue reading “LED Magic Staff Just In Time For Halloween!”

InfinitEye HMD Brings 210 Degree FOV To The Party

Head mounted displays are coming in hot and heavy this year. InfinitEye doesn’t have an official web page yet, so we’re linking to a review done by TheRoadToVR. Note that this is the second version of the display. InfinitEye released plans for their V1 HMD back in February. The InfinitEye prototype looks strikingly like the early Oculus Rift prototypes. Gaffers tape and what appears to be the frame from a face shield hold together the optical system. It’s this optical system which is interesting. InfinitEye has decided to go with head mounted LCD screens, similar to the rift, and unlike castAR’s projection system.

The InfinitEye team decided to go with two screens, giving them a whopping 1280×800 resolution per eye. The optics are also simple – fresnel lenses. This is all similar to the first version of the goggles, however the InfinitEye team claims that this new edition provides a 210 degree field of view. What we don’t know is exactly what they changed. We’re curious if the wider field of view will reduce the Sim Sickness some of us have felt with the rift – though to be fair, almost any head mounted display requires some time to adjust. What we are sure of is that the future is bright for virtual (and augmented) reality.

Continue reading “InfinitEye HMD Brings 210 Degree FOV To The Party”

Compass Guided Kayak Autopilot

logo

Last July, [Louis] bought a kayak off of Craigslist. It was a pedal-powered device with a hand-operated rudder, and he ended up enjoying his time on the water. [Louis] fishes, though, and it was a bit of a challenge to manage hands free fishing while maintaining a steady course. His solution was an Arduino-powered autopilot that allows him to troll for salmon and Arduino haters with just the push of a button.

In [Louis]’ system, a motor is attached to the steering lever along with a few limit switches. This motor is powered by an Arduino controlled with an LSM303 compass module from Sparkfun.

When the autopilot module is started up, it first checks to see if the compass module is enabled. If not, the system relies on two tact switches to change the position of the rudder. Enabling the compass requires a short calibration of spinning the kayak around in a circle, but after that the steering is dead on.

There are a few things [Louis] would like to add such as a heading display and a bluetooth module for remote control. This setup already landed him a 13 lb salmon, so we’re going to say it’s good enough to catch some dinner.

Retrotechtacular: Automata

automatonWriter

For a moment, suspend your worldview and adopt Descartes’s mechanistic interpretation that living beings are essentially complex machines: a collection of inherently unrelated parts that move and collide. Automata, then, represented the pinnacle of accomplishment in a mechanistic universe, requiring considerable skill to construct. Most of their inventors, such as Pierre Jaquet-Droz, were clockmakers or watchmakers, and automata like the 240-year-old boy writer are packed with moving parts to automate motion.

Jaquet-Droz’s writer is particularly impressive considering all its moving parts—nearly six thousand of them—fit entirely within the boy’s body, and that one can “program” the text that the boy composes. It may sound like a bit of a stretch to claim that these clockwork amusements were precursors to the computer, but they influenced inventors and engineers for centuries.

You’ve likely heard of the other famous automaton: The Turk, (which was actually a hoax, housing an operator inside its base). The Turk, however, managed to inspire Charles Babbage to pursue building a mechanical device capable of performing mathematical functions: the Difference Engine.

Watch some of Jaquet-Droz’s other clockwork masterpieces in a video after the break. Magicians like Robert-Houdin were responsible for building a number of automata, so we recommend you keep the mystical atmosphere flowing by checking out another magician’s performance oddities.

Continue reading “Retrotechtacular: Automata”