Help Ithaca Generator Get A Laser Cutter

laser-cutter

Ithaca Generator, a hackerspace in upstate New York, is running an indiegogo campaign for a laser cutter. With the recent stories of fires, and landlord problems hitting hackerspaces lately, we thought it would be good be to mention a space that is doing well and working to expand their tools. The Generator is looking to purchase a 60 Watt laser cutter. The flexible funding campaign is set for $3000 US, and they are within striking distance of just passed their goal! As any laser veteran will tell you, $3000 isn’t nearly enough for a 60 Watt model from a reputable company. The group already has a donor who will match the campaign final funding amount up to $4000. If the campaign exceeds Now that the campaign has exceeded their goal, the extra funds will go toward a fume extraction systems for the new laser, as well as spare lenses and parts. The group has also added stretch goals for an extended warranty and an upgrade to 90 Watts of laser power.

Many of the donation perks include free membership to the hackerspace. [Vic Aprea], a member of The Generator board told us that out-of-town donors can gift these memberships to anyone local to the hackerspace. A membership would be a great gift for a Cornell or Ithaca college student. For more information on the generator and the campaign check out their website and the video after the break.

[Read more...]

Drilling Custom Standoffs

standoff

Every electronics project of sufficient complexity needs standoffs – little plastic or metal cylinders – to mount boards to one another. Keeping hundreds of little plastic trinkets around doesn’t really fit with the hacker mentality, though: it would be far simpler to keep some Delrin rod stock around to drill and cut standoffs as needed. [HomeCSP] created a device to do just that, allowing him to turn 1/4″ Delrin rod stock into any size standoff he needs.

Before building this device, [HomeCSP] was taking plastic rods to the drill press fitted with a very tiny drill bit for a #2 screw. The problems with that technique should be evident to anyone. The new solution uses an old cordless drill and a 6 inch piece of linear rail, effectively turning some bits of scrap into a horizontal drill press with a stationary bit.

The end result is a machine that can bore a hole straight down a 1/4″ rod. With a box of screws these homebrew plastic rods are much cheaper than off-the-shelf parts and can be made in any length desired.

Pan Flute Hero

panflutehero

The latest creation in the never-ending collection of “____ Hero” instruments is this Raspi-infused pan flute, built by [Sven Andersson] and his team at the 2013 WOW Hackathon. The flute itself consists of varying lengths of bamboo from a local flower shop, cut short enough to be hand-held while still hiding the Pi from the front side. In the spirit of other ‘Hero’ instruments, the pan flute has no real musical functionality. Each pipe houses what appears to be an electret microphone breakout board, which they kept in place by sealing off the end of the pipe with glue.

The sensors connect to the GPIO connector on the Raspi, which communicates to a local TCP/IP server the team ran as a controller hub. The game is also their original creation, written entirely in LUA. They turned to Spotify to find suitable material for the player to experience, creating playlists with actual pan flute songs and using the libspotify SDK to access the music. You can see the end result of the project in a short demo video below.

[Read more...]

Fail of the Week: Reverse Engineering a Wireless Energy Monitor

fotw-wireless-energy-monitor-reverse-engineering

[Afonso] picked up a cheap energy use monitor a few years back. He really like the data it displays about his home’s electricity, using a sensor to gather this info and a display that communicates with it wirelessly. But there is no option to log or dump the data. He set out to reverse engineer the wireless protocol in order to extend the use of the system. As the name of this column implies, he failed to get this working.

The hardware above is a 433Mhz transceiver that he rigged up as test hardware. It sounds like he’s assuming the monitor works on this band, which could have been his first misstep (we really don’t know). The speaker is there to give audible confirmation that he’s receiving something from the transmitter. This is where things start to get pretty weird. White noise was coming from the speaker, but when he stepped away from the bench it stopped. He was able to measure a regular pattern to the noise, and proceeded to place the speaker next to his computer MIC so that he could record a sample for further analysis.

Fail of the Week always aims to be a positive experience. In this case we’d like to have a conversation about the process itself. We agree that connecting a speaker (or headphones) should help get your foot in the door because your ear will recognize a rhythmic pattern when it is received. But with this noise, measuring the timing and recording a sample we’re not so sure about. Given the situation, how would you have soldiered on for the best chance at successfully sniffing out the communication scheme used by this hardware? Leave a comment below!


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

2D Room Mapping With a Laser and a Webcam

2014-01-29-21-02-40

[Shane Ormonde] recently learned how to measure distance using just a webcam, a laser, and everyone’s favorite math — trigonometry. Since then he’s thrown the device onto a stepper motor, and now has a clever 2D room mapping machine.

He learned how to create the webcam laser range finder from [Todd Danko], a project we featured 7 years ago! It’s a pretty simple concept. The camera and laser are placed parallel to each other at a known distance, axis-to-axis. On the computer, a python script (using the OpenCV library) searches the image for the brightest point (the laser). The closer the brightest point is to the center of the image, the farther the object. Counting pixels from the center of the image to the laser point allows you to calculate an angle, which can then be used to calculate the distance to the object — of course, this needs to be calibrated to be at all accurate. [Shane] does a great job explaining all of this in one of his past posts, building the webcam laser rangefinder.

From there it was just a matter of slapping the rangefinder onto a stepper motor, driving it with a small PIC, and running the calculations on the fly! His results are fairly impressive.

[Read more...]

RIVERWATCH: An Autonomous Surface-Aerial Marsupial Robot Team

cata

Every once in a while we get a tip for a project that really, really, really blows our minds. This is one of them.

It looks like a basic catamaran with a few extra bells and whistles — except it is so much more than that. You’re looking at a fully Autonomous Surface Vehicle, complete with a piggybacking 6-rotor UAV. It’s decked out in cameras, sonar sensors, laser rangefinders, high accuracy GPS-RTK tracking, an IMU, oh, and did we mention the autonomous 6-rotor UAV capable of taking off and landing on it?

It all started out as a simple experiment within ECHORD (the European Clearing House for Open Robotics Development), and since then it has become a fully funded project at UNINOVA, a Centre of Technology and Systems in Portugal.

The purpose of the mind-blowing robot team is to collect data of river environments — think of it as Google Maps 2.0 — which is almost an understatement for what it is capable of.

You seriously have to watch the video after the break.

[Read more...]

S.A.M. The Safety Attention Monitor

Capture

Last term’s project at Chico State University hopes to reduce driver distraction by alerting you when it notices you aren’t paying attention (to the road!).

The team designed SAM using OpenCV to track your face in order to recognize when you aren’t watching the road. It alerts you through a variety of audible beeps and LED lights, and is programmed to only alert you after set time values — i.e. it’s not going to go off when you’re checking your blind spot, unless you’ve been checking it for over a certain length of time. It also has a silence button you can press for situations like looking around while you are parked.

The proof of concept device was built using a Raspberry Pi, the PiCam, and a breadboard to accommodate some manual controls, the buzzer, and LEDs. It also continuously records video of you on a 30 second loop, and in the event of an accident, it saves all the video — perhaps proving it was your fault. Can you imagine if all cars had this installed? On the plus side you wouldn’t have to argue with insurance companies — but if it really was your fault, well then you’re straight out of luck.

Follow

Get every new post delivered to your Inbox.

Join 96,376 other followers