Using a Door Handle Conductivity to Detect Intruders

Sometimes the simplest projects can be quite interesting, provided they’re well documented. We hope that the Hackaday readers also think that the door sensor that [Alexander] developed falls into this category. Instead of using common methods such as a magnet + reed switch, he decided to use the strike plate and door conductivity to detect someone walking in. The setup he put together includes an Arduino, a PowerSwitch Tail (a power cord that switches 120vac with a dc control voltage of 3-12vdc), a battery pack made of 8 AA batteries and two crocodile clips for door connections.

Most new hobbyists would have stopped there, but [Alexander] checked his platform’s power consumption and continued his work to decrease it. He therefore put the microcontroller in power-down mode by default and uses an AVR external interrupt to wake it up. In case beginners can’t understand [Alexander]’s code, he actually put a nice flow diagram on his website. Embedded after the break is a video of the system working.

Continue reading “Using a Door Handle Conductivity to Detect Intruders”

Controlling The Garmin HUD With Bluetooth


The Garmin HUD is a very neat device, putting all your navigational info, from ETA, what lane you should be in, and distance to your next turn right on your windscreen in a heads-up display. The only problem with the Garmin HUD is that it only works with the official Garmin app, despite being a Bluetooth device. Now, someone is finally digging in to the Garmin HUD protocol, allowing anyone to control this HUD from a cell phone, tablet, or computer.

Being completely unable to disassemble the Navigon app for the HUD, [gabonator] decided the only thing to do would be to open up the device and take a peek at some of the packets travelling between the microcontroller and bluetooth module.

[gabonator] expected human readable ASCII characters, but after looking at the nonsense decoded from his oscilloscope and decoding them manually, he tried simply looking at the display in operation to understand how the protocol worked. He got it all decoded, and managed to get a Sygic Navigation program working with this Garmin HUD. You can check out a video of that below.

Thanks [Kevin] for the tip.

Continue reading “Controlling The Garmin HUD With Bluetooth”

Hackaday Links: March 31, 2014


Wanting to display his Google calendars [Chris Champion] decided to mount an old monitor on the wall. The hack is his installation method which recesses both the bracket and the outlet while still following electrical code (we think).

Since we’re already on the topic. Here’s a hack-tacular project which hangs a laptop LCD as if it were a picture frame. We do really enjoy seeing the wire, which connects to the top corners and hangs from a single hook a few inches above the screen bezel. There’s something very “whatever works” about it that pleases us.

[Jaspreet] build a datalogger in an FPGA. He put together a short video demo of the project but you can find a bit more info from his repo. He’s using a DE0-Nano board which is a relatively low-cost dev board from Terasic.

Want to see what’s under the hood in the processor running a Nintendo 3DS? Who wouldn’t? [Markus] didn’t just post the die images taken through his microscope. He documented the entire disassembly and decapping process. Maybe we should have given this one its own feature?

If you’re streaming on your Ouya you definitely want a clean WiFi signal. [Michael Thompson] managed to improve his reception by adding an external antenna.

We always like to hear about the free exchange of information, especially when it comes to high-quality educational material. [Capt Todd Branchflower] teaches at the United States Air Force Academy. He wrote in to say that his ECE383 Embedded Systems II class is now available online. All the info can also be found at his Github repo.

And finally, do you remember all the noise that was made about 3D printed guns a while back? Well [Mikeasaurus] put together the .iStab. It’s a 3D printed iPhone case with an integrated folding blade…. for personal protection? Who knows. We think it should be a multitasking solution that functions as a fold-down antenna.

Measuring Magnetic Fields with a Robotic Arm


Learning how magnets and magnetic fields work is one thing, but actually being able to measure and see a magnetic field is another thing entirely! [Stanley’s] latest project uses a magnetometer attached to a robotic arm with 3 degrees of freedom to measure magnetic fields.

Using servos and aluminium mounting hardware purchased from eBay, [Stanley] build a simple robot arm. He then hooked an HMC5883L magnetometer to the robotic arm. [Stanley] used an Atmega32u4 and the LUFA USB library to interface with this sensor since it has a high data rate. For those of you unfamiliar with LUFA, it is a Lightweight USB Framework for AVRs (formerly known as MyUSB). The results were plotted in MATLAB (Octave is free MATLAB alternative), a very powerful mathematical based scripting language. The plots almost perfectly match the field patterns learned in introductory classes on magnetism. Be sure to watching the robot arm take the measurements in the video after the break, it is very cool!

[Stanley] has graciously provided both the AVR code and the MATLAB script for his project at the end of his write-up. It would be very cool to see what other sensors could be used in this fashion! What other natural phenomena would be interesting to map in three dimensions?

Continue reading “Measuring Magnetic Fields with a Robotic Arm”

Reflowing With A Hair Straightener


Around here, reflow ovens usually mean a toaster oven, and if you’re exceptionally cool, a thermistor and PID controller. There are, of course, a thousand ways to turn solder paste into a solid connection and [Saar] might have found the cheapest way yet: a hair straightener with a street value of just £15.

We don’t expect the majority of the Hackaday demographic to know much about hair straighteners, but [Saar] has done all the work and came up with a list of what makes a good one. Floating plates are a must to keep the PCB in contact with the heating element at all times, and temperature control is essential. [Saar] ended up with a Remington S3500 Ceramic Straight 230 Hair Straightener, although a trip to any big box store should yield a straightener that would work just as well.

One modification [Saar] added was a strip of Kapton tape to one of the ceramic heating elements. It’s not a replacement for a toaster oven or real reflow oven, but for small boards it works just as well.

Video below.

Continue reading “Reflowing With A Hair Straightener”

LEGO® My Single-Phase Induction Motor

[Diato556] made a really cool single-phase induction motor with parts mounted on Duplo blocks. He has posted an Instructable where he uses these modular parts to  demonstrate the motor and the principles of induction as described after the jump.


Continue reading “LEGO® My Single-Phase Induction Motor”

DIY Bluetooth Boombox Can Take a Beating!


Looking for a nice portable audio solution that can take a beating outdoors? This RaveBOX (v1.0) might be what you’re looking for!

[Angelo] is a 15 year old high school student from the Philippines who loves making things — in fact, he has a collection over 40 Instructables that he’s written himself to share with the world. He wrote his first when he was only 10 years old.

He was inspired to build this boombox when he stumbled upon a Pelican-like rugged case at the mall, so he bought it and started planning the build around it. He’s using a pair of 2-channel audio amplifiers hooked up to a Bluetooth/FM/USB/SD card player module which has a nice face-plate for external mounting. It drives a 4″ woofer, and 4 full range speakers. To modify the case, he used a Dremel and pocket knife, and we must say, he did a great job! The 12V 2.2aH lithium polymer battery provides a surprising 18 hours of playback. Continue reading “DIY Bluetooth Boombox Can Take a Beating!”