Hacking a MagSafe Connector for your iPhone

maglock

The MagSafe power connector for Apple MacBooks is probably one of the handiest features they developed — we’re not too sure why it hasn’t been integrated onto iPhones yet. [Tony Hoang] isn’t sure either, but that didn’t stop him making his very own!

Due to the size of the MagSafe adapter, it’s simply not possible to integrate it directly into an iPhone, so [Tony] took his trusty Otter-box case and modified it instead. He’s using a Qi wireless charging receiver on the inside of the case, because it has a very slim ribbon cable to the USB. Modifying that he was able to solder on the MagSafe adapter directly to the ribbon cable. In order for it to fit nicely through the case, he 3D printed an adapter bracket for it to stay nice and secure.

From there it was just a matter of soldering the MagSafe power cable onto a 5V USB power brick, and boom-bada-bing, he’s got a MagSafe compatible iPhone. Previously he’s done this mod to a Samsung Note II, and plenty of other people have added it to laptops and ultrabooks!

A Head Unit Docking Station

dock

[Ivan] had a simple idea: being able to control his Android device from the small keypad on his car’s steering column. This would allow him to cycle through apps, navigation, and audio tracks while never taking his hands off the wheel. Feature creep then set in and [Ivan] asked himself how he could charge his phone through the same interface. What he ended up with is a head unit that’s also a dock.

While [Ivan]‘s steering wheel doesn’t have the nice integrated remote control buttons found in newer cars, he does have a Blaupunkt remote, a small, clip-on controller that has a an IR transmitter on it. The IR receiver was connected to a PIC microcontroller, sending commands to the phone for up, down, left, right, menu, and home. Audio output from the phone is handled by a small USB sound card connected to a USB hub, sending the audio signals directly into the head unit’s amplifier.

Having the phone charge while it’s still in USB host mode is the crucial part of this build; not being able to charge on a long car ride would quickly drain the battery and make a car dock kind of pointless. To accomplish this, [Ivan] simulated a Galaxy S4 dock with a few resistors in the USB port, allowing the phone to control the USB sound card, listen to the emulated keyboard and mouse, and charge at the same time.

It’s not a pretty build, but it is extraordinarily useful. In the videos you can see that [Ivan] pretty much pulled this build together from stuff he had sitting around – a great reuse of junk, and a great addition to his car at the same time.

[Read more...]

THP Entry: An Affordable Metal 3D Printer

metalFor years now, people have been trying to develop an affordable, RepRap-derived 3D printer that will create objects in metal. There has been a lot of work with crazy devices like high-powered lasers, and electron beams, but so far no one has yet developed a machine that can print metal objects easily, cheaply and safely. For The Hackaday Prize, [Sagar] is taking a different tack for his metal 3D printer: he’s extruding low temperature alloys just like a normal 3D printer would extrude plastic.

[Sagar]‘s printer is pretty much a carbon copy of one of the many ‘plastic-only’ 3D printers out there, the only change being in the extruder and hot end. As a material, he’s using an alloy of 95.8% tin, 4% copper, and 0.2% silver in a 3mm diameter spool. This alloy melts at 235° C, about the same temperature as the ABS plastic these printers normally use.

The only real problems with this build are the extruder and nozzle. [Sagar] is milling his own nozzle and hot end out of stainless steel; a challenging bit of machining, but still within the realm of a hobbyist. He has some doubts about the RepRap derived plastic geared extruder being able to handle metal, so he’s also looking at designing a new version and milling that out of stainless as well.

It’s an awesome project, and we hope we’ll be seeing some updates to the project shortly. While a 3D printer that produces objects out of a low temperature alloy won’t be building rocket engines any time soon, it could be a great way to fabricate some reasonably high-strength parts at home.


SpaceWrencherThe project featured in this post is an entry in The Hackaday Prize. Build something awesome and win a trip to space or hundreds of other prizes.

Ask Hackaday: Program Passes Turing Test, but is it Intelligent?

turing test program screenshot

A team based in Russia has developed a program that has passed the iconic Turing Test. The test was carried out at the Royal Society in London, and was able to convince 33 percent of the judges that it was a 13-year-old Ukrainian boy named Eugene Goostman.

The Turing Test was developed by [Alan Turing] in 1950 as an existence proof for intelligence: if a computer can fool a human operator into thinking it’s human, then by definition the computer must be intelligent. It should be noted that [Turing] did not address what intelligence was, but only tried to identify human like behavior in a machine.

Thirty years later, a philosopher by the name of [John Searle] pointed out that even a machine that could pass the Turing Test would still not be intelligent. He did this through a fascinating thought experiment called “The Chinese Room“.

[Read more...]

A closer look at New Matter’s MOD-t 3d printer

So last week the SupplyFrame office Prusa i3 finally gave up the ghost — the z-axis threaded rods unwound themselves from their couplers and the whole thing fell apart. So we needed to get some better couplers as our tubing wasn’t going to cut the mustard anymore. Thankfully Pasadena is full of 3d printer people! Within a few blocks of our office we have New Matter, DeezMaker, and a soon to be announced 3d printer from ToyBuilderLabs.

The one everyone is talking about right now is New Matter who recently announced an already successful fundraising campaign for the first run of their $250 3d printer, the MOD-t. This has been making the rounds recently due to its low price and stated aim of bringing 3d printing into the home of the masses (a tale as old as time, right?). It’s a lovely goal for sure, but they will definitely have their work cut out for them, but perhaps this is the team to make it happen? We decided to head over to their lab since it’s just around the corner from our office and see if we could get them to print some new couplers and maybe take a look at their printer while we were at it, videos and pictures after the break!

[Read more...]

Video: The Lowly Diode — Umpteen Functions with Only Two Pins

 

The lowly diode, a device with only two leads, can nonetheless do many things. Diodes can detect, rectify, suppress, emit light, detect light, change capacitance, emit microwaves and more. This wide range of use means diodes are included in almost every design and it’s well worth learning more about the inner workings of all kinds of diodes.

My introduction to diodes started like many of my generation with a homemade crystal radio set. My first diode was a piece of pencil graphite in contact with an old fashion safety razor with the joint of the two dissimilar materials — graphite and steel — creating the diode. In this configuration the diode is said to be “detecting” which is the act of turning a weak radio signal into a weak audio signal. At least in my home town of Marion Indiana, one radio station was stronger than the other so that I didn’t have to listen to two stations at once.

Germanium Glass Diode

The venerable 1N34A Germanium Signal Diode.

I eventually learned about “real” diodes and the 1N34A Germanium diode was my “goto” diode into my teens. Nowadays looking into a modern version of the 1N34A you can still see the semblance of the old “cat’s whisker” by looking carefully into the diode.

A quick and somewhat inaccurate semblance of the way a diode works can be demonstrated with marbles and jacks representing negative electrons and positive “holes”. Holes are basically an atom missing an electron due to the combination of elements, a process known as doping. Join me after the break for the explanation.

Demonstrating a PN Junction with marbles and Jacks.

Demonstrating a PN Junction with marbles and Jacks.

[Read more...]

Beating Simon

Simon

Virtually everyone has played Simon, that electronic memory game from the 70s, but who among us has actually beaten it? That was the goal of [Ben] and his 7-year-old daughter, and after a year of work, an Arduino, some servos, and a few Lego bricks, they’ve finally done it.

Instead of the large original Simon, [Ben] is using a key chain version of the game: much smaller, and much easier to build a device to sense the lights and push the buttons. The arms are made from Lego bricks, held up with rubber bands and actuated with two servos mounted on a cutting board.

To detect Simon’s lights, [Ben] connected four phototransistors to an Arduino. The Arduino records the pattern of lights on the Simon, and activates the Lego arms in response to that pattern. [Ben]‘s version of Simon has only a maximum of 32 steps in the final sequence, but that still means each game takes 528 button presses – and a lot of annoying beeps – to complete.

Videos below.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,052 other followers