Electric Longboard Roundup

ev longboards everywhere!

Everybody and their grandmother is longboarding electric-style these days: here are some of the most recent developments in the world of kickless cruising.

First up, [comsa42] has punched up an excellent step-by-step visual guide for first-time EV hopefuls, detailing the basics of a battery-powered longboard setup and thoroughly explaining the particulars behind component choices. His build is relatively straightforward: combine a board with a low(ish) kV outrunner motor, some LiPo batteries, an ESC (Electronic Speed Controller), a transmitter/receiver, and a few custom parts for gearing and mounting. This build should be commended not only for its simplicity but also for its frugality: [comsa42] estimates a final cost of around only $300, which is a staggering difference from commercial alternatives such as the Boosted Board and newcomer Marbel.

[comsa42's] other significant contribution is a low-key and low-cost cover to house the electronics. He simply fiberglassed a small enclosure to protect the expensive internals, then mounted and painted it to blend seamlessly with the rest of the deck. You can find loads of other useful goodies in his guide, including CAD files for the motor mounts and for the wheel assembly.

But wait, there’s more! Stick around after the jump for a few other builds that ditch traditional wheels in favor of a smoother alternative. There’s also a smattering of videos, including comsa42′s] guide overview and some excellent cruising footage of the other board builds doing what they do best.

Continue reading “Electric Longboard Roundup”

VRcade’s The Nightmare Machine (Kickstarter Campaign)

vrcade2

Aiming to be the leader in Virtual Reality horror experiences is the immersive VR haunted house in Seattle called ‘The Nightmare Machine’ which promises to be one of the most terrifying events this Halloween. But they need some assistance raising money to achieve the type of scale on a large public level that the project is attempting. The goal is $70,000 within a 30 day period which is quite the challenge, and the team will need to hustle every single day in order to accomplish it.

Yet the focus of the project looks good though, which is to lower the massive barriers of entry in VR that are associated with high hardware costs and provide people with a terrifying 5 minutes of nightmare-inducing experiences. This type of fidelity and range is usually only seen in military research facilities and university labs, like the MxR Lab at USC. And, their custom-built head mounted displays bring out this technology into the reach of the public ready to scare the pants off of anyone willing to put on the VR goggles.

The headsets are completely wireless, multi-player and contain immersive binaural audio inside. A motion sensing system has also been integrated that can track movements of the users within hundreds of square feet. Their platform is a combination of custom in-house and 3rd party hardware along with a slick software framework. The technology looks amazing, and the prizes given out through the Kickstarter are cool too! For example, anyone who puts in $175 or more gets to have their head 3D scanned and inserted into the Nightmare Machine. The rest of the prices include tickets to the October showcase where demos of the VR experience will be shown.

Continue reading “VRcade’s The Nightmare Machine (Kickstarter Campaign)”

Joe Grand Talks Deconstructing Circuit Boards

With the exception of [Eric Evenchick], the Hackaday crew are safely back from Defcon and not missing in the desert. This means we can really start rolling out all the stuff we saw this weekend, beginning with an interview with [Joe Grand], creator of the JTAGulator, early member of l0pht, and generally awesome dude.

The focus of [Joe]‘s many talks this year was reverse engineering circuit boards. Most of these techniques involved fairly low-tech methods to peel apart circuit boards one layer at a time: sandpaper and milling machines are the simplest techniques, but [Joe] is also using some significantly more uncommon methods. Lapping machines get a mention, as do acoustic microscopy, CAT scans, and x-rays. [Joe]‘s Defcon talk isn’t up on the intertubes yet, but his BSides talk about techniques that didn’t work is available.

In case you forgot, [Joe] is also a judge for a little contest we’re running, and we asked what he’s looking for in a truly spaceworthy entry. [Joe]‘s looking for projects with a lot of effort put into them. Don’t get us wrong, project that require no effort can be extremely popular, but documentation is king. [Joe] thinks well documented projects are evidence project creators are building something because they want to build it, and not because they want to win a prize. That’s intrinsic motivation, kiddies. Learn it.

And So Castings Made of (Kinetic) Sand . . . Turn Out Pretty Well, Actually

That kinetic sand stuff is pretty cool. It’s soft, it builds motor skills, and outside of sprinkling it on carpet, it’s not messy. If you don’t know, it’s 98% sand and 2% polydimethylsiloxane, which is a major component of Silly Putty, and according to a certain yellow and red clown, it’s safe enough to put in chicken nuggets. [Chris]‘s wife bought him some, probably because she wanted to see him play around with something that isn’t potentially deadly for a change. In the course of researching its magical properties, he found out that it doesn’t really have a thermal breakdown point, per se. At high enough temperatures, It vitrifies like a sand castle in a mushroom cloud. Between this property and its malleability, [Chris] thought he’d have a reasonable substitute for founding sand. As you can see in his latest experiment, he was right. As a bonus, he managed to turn the benign into the dangerous.

[Chris] had never cast aluminium before, so he decided to start small by making an offset cam for a rotary broach. He packed some magic sand in a wax paper cup and shoved the cam in to make the negative. Then he cut down some aluminium rod and put it in a graphite crucible. He stuck his DC arc welder’s electrode down into the crucible and cranked it up to 50A. That wasn’t enough, so he went to 110. The crucible was soon glowing orange. He carefully poured the molten aluminium into the mold. Make the jump to see how it panned out.

Spoiler alert: there’s no cussin’ this time!

Continue reading “And So Castings Made of (Kinetic) Sand . . . Turn Out Pretty Well, Actually”

Retrotechtacular: The Voder from Bell Labs

voder

This is the under-the-hood view of the keyboard for the Voder (Voice Operating Demonstrator), the first electronic device capable of generating continuous human speech. It accomplishes this feat through a series of keys that generate the syllables, plosives, and affricatives normally produced by the human larynx and shaped by the throat and tongue. This week’s film is a picture montage paired with the audio from the demonstration of the Voder at the 1939 World’s Fair.

The Voder was created by one [Homer Dudley] at Bell Laboratories. He did so in conjunction with the Vocoder, which analyzes human-generated speech for encrypted transfer and re-synthesizes it on the other end. [Dudley] spent over 40 years researching speech at Bell Laboratories. His development of both the Voder and the Vocoder were instrumental in the SIGSALY project which aimed to deliver encrypted voice communication to the theatres of WWII.

Continue reading “Retrotechtacular: The Voder from Bell Labs”

Cutting Records Out of CDs

3D Printed Record Lathe

Lovers of records rejoice! Did you know you can cut your own vinyl using something called a record lathe? [Beau Walker] just put the finishing touches on his 3D printed record lathe, and the results speak for themselves!

A Recording Lathe was once used for cutting records, and previously, wax cylinders – if you want to get really old school. [Beau], being an analog lover, decided he had to try making his own. He designed the whole thing in FreeCAD and got 3D printing. A single stepper motor drives the lead screw which moves the writing head back and forth as the record spins in place. As to not waste materials, he’s reusing old CD’s for his newly created vinyls. Two 25W speakers cause vibrations in the needle to cut into the disc, via a clever little mechanism.

The system works pretty well, but he wants to replace the turntable with another stepper motor for finer control of the recording — sometimes the turntable slows down during recording under load which messes up the sound. There’s a video of it in action on his site that we can’t embed here, so you should definitely go check it out!

Of course you could skip the middleman and go straight to 3D printing your records…

Hyperlapse Makes Your HeadCam Videos Awesome

hyperlapse First person video – between Google Glass, GoPro, and other sports cameras, it seems like everyone has a camera on their head these days. If you’re a surfer or skydiver, that might make for some awesome footage. For the rest of us though, it means hours of boring video. The obvious way to fix this is time-lapse. Typically time-lapse throws frames away. Taking 1 of every 10 frames results in a 10x speed increase. Unfortunately, speeding up a head mounted camera often leads to a video so bouncy it can’t be watched without an air sickness bag handy. [Johannes Kopf], [Michael Cohen], and [Richard Szeliski] at Microsoft Research have come up with a novel solution to this problem with Hyperlapse.

Hyperlapse photography is not a new term. Typically, hyperlapse films require careful planning, camera rigs, and labor-intensive post-production to achieve a usable video. [Johannes] and team have thrown computer vision and graphics algorithms at the problem. The results are nothing short of amazing.

The full details are available in the team’s report (35MB PDF warning). To obtain usable data, the fisheye lenses often used on these cameras must be calibrated. The team accomplished that with the OCamCalib toolbox. Imported video is broken down frame by frame. Using structure from motion algorithms, hyperlapse creates a 3D models of the various scenes in the video. With the scenes in this virtual world, the camera can be moved and aimed at will. The team’s algorithms then pick a smooth path that follows the original cameras trajectory. Once the camera’s position is known, it’s simply a matter of rendering the final video.

The results aren’t perfect. The mountain climbing scenes show some artifacts caused by the camera frame rate and exposure changing due to the varied lighting conditions. People appear and disappear in the bicycling portion of the video.

One thing the team doesn’t mention is how long the process takes. We’re sure this kind of rendering must require some serious time and processing power. Still, the output video is stunning.

Continue reading “Hyperlapse Makes Your HeadCam Videos Awesome”