Electricity Usage Monitor is Linked to Google Spreadsheets

If you want to make your home more energy-efficient, chances are you will need a way to monitor your electricity usage over time. There are off-the-shelf solutions for this of course, but hackers like us tend to do things our own way. Take [Karl] for example. He recently built himself a solution with only a few smart components. We’ve seen similar projects in the past, but none quite like this.

[Karl’s] home has a power meter that blinks an LED to indicate the current amount of used electricity in Watt-hours. He knew all he needed was a way to electronically detect the blinking LED and he’d be able to accurately track his usage without modifying the meter.

The primary components used in this project were a CC3200 development kit and a photoresistor module. The dev kit contained a WiFi module built-in, which allows the system to upload data to Google spreadsheets as well as sync the built-in clock with an accurate time source. The photoresistor module is used to actually detect the blinking LED on the power meter. Everything else is done easily with code on the dev kit.

Flexible Numitron Tube Clock Build

Hackers and makers alike often use whatever’s readily available. Sometimes this is done out of necessity, other times because of the desire to make something work without waiting for parts to ship or some store to open. And many times, we use what we already have simply because it presents a challenge. A couple of years ago, [Alan] made a beautiful clock that combines the lessons he learned from building a word clock with the challenges presented by some IV-9 and IV-16 Numitron tubes he acquired.

This build expanded [Alan]’s horizons while extending the use of his existing tools. The timekeeping is done with a word clock board he had designed previously that can utilize any of three kinds of RTC modules. Further flexibility is evident in the top board, which is designed with double footprints to accommodate through-hole or SMD shift registers and resistors. His current board iteration allows for chaining if you like your time displays long and specific. If the vintage blue reddish-orange glow of VFDs  Numitron tubes offends your eyes for some reason, there’s a dual-footprint for a single-color LED under each tube.

It’s worth mentioning that these are not Nixie tubes, they are vacuum fluorescent displays (VFD)s Numitron tubes.  If you already have or plan to acquire some but don’t know how to drive them, check out this Numitron tutorial we covered a few years back.

Edit: D’oh. As you have pointed out, these are Numitron tubes, not VFDs or Nixies. That is what multitasking will get you. We applaud your vigilance.

Full SHTTTRRR Control Lets You Take Your Time…

[Glitchmaker] loves photography and wrote in to tell us about his newest project. He has a Canon 1000D camera but, unfortunately, it does not have time lapse capability. So, instead of shelling out a chunk of change for a new camera [Glitchmaker] decided to make an external shutter control device that can continue to instruct the camera to take photos at predetermined intervals. He calls his project: SHTTTRRR. You didn’t think that meant something else, did you?

You can see the unassuming box above, there is just enough stuff packed in there to get the job done, nothing extra or fancy. Luckily, the Cannon camera has a remote shutter input jack that only requires connecting one pin to another in order to take a photo. Inside the box is an ATTINY45 microcontroller. It reads the button pushes from the single panel-mounted button and calculates the time between two button presses. That time between button presses determines the frequency of the photos taken. At the appropriate times, the ATTINY45 signals a transistor to connect the two appropriate pins on the camera’s remote shutter input jack. The device continues to tell the camera to take photos until it is shut off. The result is a series of time-lapse photos that was previously not possible on that camera!

This is a simple project that solves a problem and gets the job done. What’s better than that? [Glitchmaker] is proud of the SHTTTRRR he made and also learned a bunch about programming the ATTINY45 along the way. Check a video of it working after the break.

Continue reading “Full SHTTTRRR Control Lets You Take Your Time…”

Budget Wrist-Controlled RC car is a nice touch

Does your RC car’s crude, push-button controller make you feel like you’re mashing tv remote buttons like a caveman? We think so too, but [Noel] has actually done the heavy-lifting to fix just that. He’s revamped his kids’ rc controller for gesture control. Now their rc car can be guided by the crisp, intuitive control of one’s wrist movements.

To tackle this project, [Noel] has integrated a gyroscope and accelerometer, an Arduino, and the existing remote. Data from the gyroscope-and-accelerometer limits are mapped to the buttons through an Arduino, which parses the raw data and triggers the controller’s switches, now wired directly to the Arduino and pulled up with resistors. In his overview video, [Noel] tells us that he’s binarized the gyroscope-and-accel data to trigger at certain limits, a choice that adequately suits the controller’s original push-button controls. Finally, the entire setup is cleanly strapped to a 3D-printed case. Not bad, for a grand total of $20 and a quick trip to Target.

[Noel]’s custom wrist-controller takes its place on the shelf of many other unique controllers, and his demo is a great example of using existing open hardware to tailor our toys to more personal tastes. After all, the hardware shopping list is just a breakout board, an Arduino, and a few jumper wires. When the next zombie apocalypse hits, we can easily see some practical components like these making their way into our suitcase. At the very least, we’ll be able to build a few wrist controllers and dispatch some toy cars to greet the undead.

Continue reading “Budget Wrist-Controlled RC car is a nice touch”

Clockety Uses Phone Flash for Projection Clock

[Gaurav Taneja] was showing off his projection clock add-on for iPhone called Clockety at this year’s Consumer Electronics Show. The concept is pretty neat, a clip-on clock which uses the iPhone flash LED as the light source. It may sound a little gimmicky until you see the functionality of the accompanying app which is shown off in the video after the break. Once clipped onto the phone, you lay it face down on your night stand and a gentle tap on the furniture will turn the projection on or off. This is a killer feature when you’re staying some place without an illuminated bedside clock.

Continue reading “Clockety Uses Phone Flash for Projection Clock”

[Tesla500] Builds a High-Speed Video Camera

[Tesla500] has a passion for high-speed photography. Unfortunately, costs for high-speed video cameras like the Phantom Flex run into the tens or even hundreds of thousands of dollars. When tools are too expensive, you do the only thing you can – you build your own! [Tesla500’s] HSC768 is named for the data transfer rate of its image sensor. 768 megapixels per second translates to about 960MB/s due to the 10 bit pixel format used by the On Semiconductor Lupa1300-2 image sensor.

This is actually [Tesla500’s] second high-speed camera, the first was HSC80, based upon the much slower Lupa300 sensor. HSC80 did work, but it was tied to an FPGA devboard and controlled by a PC. [Tesla500’s] experience really shows in this second effort, as HSC768 is a complete portable system running Linux with a QT based GUI and a touchscreen. A 3D printed case gives the camera that familiar DSLR/MILC  shape we’ve all come to know and love.

The processor is a Texas Instruments TMS320DM8148 DaVinci, running TI’s customized build of Linux. The DaVinci controls most of the mundane things like the GUI, trigger I/O, SD card and SATA interfaces. The real magic is the high-speed image acquisition, which is all handled by the FPGA. High-speed image acquisition demands high-speed memory, and a lot of it! Thankfully, desktop computers have given us large, high-speed DDR3 ram modules. However, when it came time to design the camera, [Tesla500] found that neither Xilinx nor Altera had a FPGA under $1000 USD with DDR3 module support. Sure, they will support individual DDR3 chips, but costs are much higher when dealing with chips. Lattice did have a low-cost FPGA with the features [Tesla500] needed, so a Lattice ECP3 series chip went into the camera.

The final result looks well worth all the effort [Tesla500] has put into this project. The HSC768 is capable of taking SXGA (1280×1024) videos at 500 frames per second, or 800×600 gray·scale images at the 1200 frames per second. Lower resolutions allow for even higher frame rates.  [Tesla500] has even used the camera to analyze a strange air oscillation he was having in his pneumatic hand dryer.  Click past the break for an overview video of the camera, and the hand dryer video. Both contain some stunning high-speed sequences!

Continue reading “[Tesla500] Builds a High-Speed Video Camera”

Knitting In The Round

There have been a few posts on Hackaday over the years involving knitting, either by modifying an old Brother knitting machine to incorporate modern hardware, or by building a 3D printed knitting machine. All of these hacks are examples of flat knitting, and are incapable of making a seamless tube. Circular Knitic bucks that trend by using 3D printing and laser cutters to create an open source circular knitting machine.

Circular Knitic is an expansion on an earlier build that gave a new brain to old Brother knitting machines from the 70s. This build goes well beyond simple manipulation of electrons and presents an entire knitting machine specifically designed for circular knitting. It’s completely automated, so once the machine is set up, a giant tube of knit yarn is automagically created without any human intervention.

This isn’t the first completely open source knitting machine; OpenKnit can be made with aluminum extrusion, some electronics, and a few 3D printed parts. Circular Knitic is, however, the first circular knitting machine we’ve seen, and according to the Github is completely open source.

The creators of Circular Knitic, [Varvara] and [Mar] have been showing off their machine at an exhibition in Zaragoza, Spain called DOERS, where they’ll be knitting for the better part of six months. You can see some video of that below.

Continue reading “Knitting In The Round”