Synthesizing Strings on a Cyclone V

Cornell students [Erissa Irani], [Albert Xu], and [Sophia Yan] built a FPGA wave equation music synth as the final project for [Bruce Land]’s ECE 5760 class.

The team used the Kaplus-Strong string synthesis method to design a trio of four-stringed instruments to be played by the Cyclone V FPGA. A C program running on the development board’s ARM 9 HPS serves as music sequencer, controlling tempo and telling the FPGA which note to play.

The students created versions of four songs, including “Colors of the Wind” from the Pocahantas soundtrack, “Far Above Cayuga’s Waters” (Cornell’s alma mater) and John Legend’s “All of Me”. A simple GUI allows the viewer to select a song and to choose which instrument or instruments to play, providing multiple variations for each song.

Thanks, [Bruce]!

Continue reading “Synthesizing Strings on a Cyclone V”

Everything’s a Touch Surface with Electrick

Touch screens are great, but big touchscreens are expensive and irregular touchscreens are not easy to make at all. Electrik is a method developed by several researchers at Carnegie Mellon University that makes almost any solid object into a touch surface using tomography. The catch is that a conductive coating — in the form of conductive sheets, 3D plastic, or paint — is necessary. You can see a demonstration and many unique applications in the video below. They’ve even made a touch-sensitive brain out of Jell-O and a touchable snowman out of Play-Doh.

The concept is simple. Multiple electrodes surround the surface. The system injects a current using a pair of electrodes and then senses the output at the other terminals. A finger touch will change the output of several of the electrodes. Upon detection, the system will change the injection electrodes and repeat the sensing. By using multiple electrode pairs and tomography techniques, the system can determine the location of touch and even do rough motion tracking like a low-resolution touch pad mouse.

Continue reading “Everything’s a Touch Surface with Electrick”

Self-assembling Polymers Support Silicone 3D Prints

We all know what the ultimate goal of 3D printing is: to be able to print parts for everything, including our own bodies. To achieve that potential, we need better ways to print soft materials, and that means we need better ways to support prints while they’re in progress.

That’s the focus of an academic paper looking at printing silicone within oil-based microgels. Lead author [Christopher S. O’Bryan] and team from the Soft Matter Research Lab at the University of Florida Gainesville have developed a method using self-assembling polymers soaked in mineral oil as a matrix into which silicone elastomers can be printed. The technique takes advantage of granular microgels that are “jammed” into a solid despite being up to 95% solvent. Under stress, such as that exerted by the nozzle of a 3D printer, the solid unjams into a flowing liquid, allowing the printer to extrude silicone. The microgel instantly jams back into a solid again, supporting the silicone as it cures.

[O’Bryan] et al have used the technique to print a model trachea, a small manifold, and a pump with ball valves. There are Quicktime videos of the finished manifold and pump in action. While we’ve covered flexible printing options before, this technique is a step beyond and something we’re keen to see make it into the hobby printing market.

[LonC], thanks for the tip.

Robot Lives in Your Garden and Eats the Weeds

You can’t deny the appeal of gardening. Whether it’s a productive patch of vegetables or a flower bed to delight the senses, the effort put into gardening is amply rewarded. Nobody seems to like the weeding, though — well, almost nobody; I find it quite relaxing. But if you’re not willing to get down and dirty with the weeds, you might consider deploying a weed-eating garden robot to do the job for you.

Dubbed the Tertill, and still very much a prototype, the garden robot is the brainchild of some former iRobot employees. That’s a pretty solid pedigree, and you can see the Roomba-esque navigation scheme in action — when it bumps into something it turns away, eventually covering the whole garden. Weed discrimination is dead simple: short plants bad, tall plants good. Seedlings are protected by a collar until they’re big enough not to get zapped by the solar-powered robot’s line trimmer.

It’s a pretty good idea, but the devil will be in the details. Will it be able to tend the understory of gardens where weeds tend to gather as the plants get taller? Can it handle steep-sided raised beds or deeply mulched gardens? Perhaps there are lessons to be learned from this Australian weed-bot.

Continue reading “Robot Lives in Your Garden and Eats the Weeds”

Hackaday Prize Entry: HeartyPatch

[Ashwin K Whitchurch] and [Venkatesh Bhat] Have not missed a beat entering this year’s Hackaday Prize with their possibly lifesaving gadget HeartyPatch. The project is a portable single wire ECG machine in a small footprint sporting Bluetooth Low Energy so you can use your phone or another device as an output display.

Projects like this are what the Hackaday Prize is all about, Changing the world for the better. Medical devices cost an arm and a leg so it’s always great to see medical hardware brought to the Open Source and Open Hardware scene. We can already see many uses for this project hopefully if it does what’s claimed we will be seeing these in hospitals around the world sometime soon. The project is designed around the MAX30003 single-lead ECG monitoring chip along with an ESP32 WiFi/BLE SoC to handle the wireless data transmission side of things.

We really look forward to seeing how this one turns out. Even if this doesn’t win a prize, It’s still a winner in our books even if it only goes on to help one person.

Social Engineering is on The Rise: Protect Yourself Now

As Internet security has evolved it has gotten easier to lock your systems down. Many products come out of the box pre-configured to include decent security practices, and most of the popular online services have wised up about encryption and password storage. That’s not to say that things are perfect, but as the computer systems get tougher to crack, the bad guys will focus more on the unpatchable system in the mix — the human element.

History Repeats Itself

Ever since the days of the ancient Greeks, and probably before that, social engineering has been one option to get around your enemy’s defences. We all know the old tale of Ulysses using a giant wooden horse to trick the Trojans into allowing a small army into the city of Troy. They left the horse outside the city walls after a failed five-year siege, and the Trojans brought it in. Once inside the city walls a small army climbed out in the dead of night and captured the city.

How different is it to leave a USB flash drive loaded with malware around a large company’s car park, waiting for human curiosity to take over and an employee to plug the device into a computer hooked up to the corporate network? Both the wooden horse and the USB drive trick have one thing in common, humans are not perfect and make decisions which can be irrational. Continue reading “Social Engineering is on The Rise: Protect Yourself Now”

Robotsota, Fighting Geese, and Machine Speak at World Create Day

A few weekends ago, we kicked the Hackaday Prize into gear with World Create Day. This was a celebration of building stuff, and served as a get together for master builders to figure out what they’re going to build this year. We had an amazing turnout all around the globe, and a splendid time was had by all. Continue reading “Robotsota, Fighting Geese, and Machine Speak at World Create Day”