Open Source Cloud Chamber

If you are a certain age, there were certain science toys you either had, or more likely wanted. A chemistry set, a microscope, a transparent human body, and (one of several nuclear toys) a cloud chamber. Technically, a Wilson cloud chamber (named after inventor Charles Wilson) isn’t a toy. For decades it was a serious scientific tool responsible for the discovery of the positron and the muon.

The principle is simple. You fill a sealed chamber with a supersaturated water or alcohol vapor. Ionizing radiation will cause trails in the vapor. With a magnetic field, the trails will curve depending on their charge.

If you didn’t have a cloud chamber, you can build your own thanks to the open source plans from [M. Bindhammer]. The chamber uses alcohol, a high voltage supply, and a line laser. It isn’t quite the dry ice chamber you might have seen in the Sears Christmas catalog. A petri dish provides a clear observation port.

We’ve covered cloud chamber builds before, ranging from the simple to ones that use thermoelectric coolers.

An actively cooled cloud chamber

This cloud chamber is designed to keep the environment friendly for observing ionizing radiation. The group over at the LVL1 Hackerspace put it together and posted everything you need to know to try it out for yourself.

A cloud chamber uses a layer of alcohol vapor as a visual indicator of ionizing particles. As the name suggests, this vapor looks much like a cloud and the particles rip though it like tiny bullets. You can’t see the particles, but the turbulence they cause in the vapor is quite visible. Check out the .GIF example linked at the very bottom of their writeup.

The chamber itself uses a Peltier cooler and a CPU heat sink. The mounting and insulation system is brilliant and we think it’s the most reliable way we’ve seen of putting one of these together. Just remember that you need a radioactive source inside the chamber or you’ll be waiting a long time to see any particles. They’re using a test source here, but we saw a cloud chamber at our own local Hackerspace that used thoriated tungsten welding rods which are slightly radioactive.

[Thanks JAC_101]

Researching cosmic rays with cloud chambers

In the late 1940s, the US Naval Research Laboratory used a few German-built V2 rockets to study cosmic rays from above Earth’s atmosphere. To do this, a nitrogen-powered cloud chamber was fitted inside the nose cone of these former missiles, sent aloft, and photographed every 25 seconds during flight. When [Markus] read about these experiments, he thought it would be an excellent way to study cosmic rays from a high altitude balloon and set about building his own Wilson cloud chamber.

Cloud chambers work by supersaturating the atmosphere with water or alcohol vapor. This creates a smoky cloud inside the chamber, allowing for the visualization of radiation inside the cloud. Usually the clouds in these chambers are made in a very cold environment using dry ice, but rapidly decreasing the air pressure in the chamber will work just as well, as [Markus] discovered.

[Markus]’s small cloud chamber uses a CO2 cartridge to provide the pressure in the cloud chamber before dumping the CO2 out of the chamber with the help of a solenoid valve.

In the video after the break, [Markus] demonstrates his cloud chamber by illuminating the cloud with a laser pointer and introducing a few alpha particles with a sample of Americium 241. It looks very cool, and seems to be useful enough to count cosmic rays aboard a balloon or amateur rocket.

Continue reading “Researching cosmic rays with cloud chambers”

Your very own cloud chamber


[Kenneth] and [Jeff] spent a weekend building a cloud chamber. This is a detection device for radiation particles that are constantly bombarding the earth. It works by creating an environment of supersaturated alcohol vapor which condenses when struck by a particle travelling through the container, leaving a wispy trail behind. This was done on the cheap, using isopropyl alcohol and dry ice. They already had a beaker, and after a few tries figured out that the dry ice worked best when serving as a bed for the flask. A black piece of paper was added inside the base of the container to help raise the contrast when looking for condensate. They experimented with a couple of different methods for warming the alcohol, including an immersion heater built from power resistors.

There’s a video explaining the apparatus which we’ve embedded after the break. It’s a bit hard to see evidence of particle travel in the video but that’s all the more reason you should give this a try yourself.

Continue reading “Your very own cloud chamber”

Peltier cooler based cloud chamber

[Rich] shares with us his build of a Peltier cooler based cloud chamber. This nifty little tool allows him to see the paths that radioactive particles take through alcohol vapor. The system he has come up with is fairly cheap at roughly $100. He’s using Peltier coolers from computers and a cheap ATX power supply. You can see a more detailed instructable here.

[via Make]

The God Particle

The Greek philosopher Plato is well known for his allegories and metaphors. Of particular interest is his Allegory of the Cave, which appeared in The Republic, written around 380BCE. In it, Plato describes a group of prisoners which are chained to a wall within a cave, and have been all of their lives. They have no direct interaction with the world outside of the cave. They only know of the world via shadows that are cast on the wall opposite of them.  For the prisoners, the shadows are their reality.  Though you and I know the shadows are only a very low-resolution representation of that reality.

Plato’s “Allegory of the Cave”, drawing by Markus Maurer

Theoretical physicist Steven Weinberg, a Nobel Prize winner who works out of the University of Texas at Austin, once likened himself to a prisoner in Plato’s cave. We are forever chained to this cave by the limitations in measurements we can make and experiments we can perform. All that we can know are shadows of the reality that exists in the sub-atomic world. We can see the shadowy figures lurking in our math and as wisps of misty vapor trails in our cloud chambers. We attempt to pierce the veil with the power of our imagination and draw nifty looking charts and animations depicting what our mind’s eye thinks it can see. But in the end, we are all trapped in a cave… staring at shadows. Reflections of a reality we can never truly know.

In our last Quantum Mechanics article, we introduced you to the idea of quantum electrodynamics, or to put it more simply — quantum field theory. In this article, we’re going to explore how QED lead to the prediction and eventual confirmation of something known as the Higgs Boson, also known as the God Particle. As usual, we’ll aim to keep things as simple as possible, allowing anyone with a curious mind to know what this God particle talk is all about. Like so many things in the quantum world, it all started with an unexpected outcome…

Continue reading “The God Particle”

Books You Should Read: The Annotated Build-It-Yourself Science Laboratory

Like a lot of engineers, I spent a lot of time in libraries when I was a kid. There were certain books you’d check out over and over again. One of those was [Raymond Barrett’s] Build-It-Yourself Science Laboratory. That book really captured my imagination with plans for things as simple as a funnel to as complex as an arc furnace (I actually built that one; see diagram above), a cloud chamber, and an analog computer (see below). That book was from 1963 and that did present a few unique challenges when I read it in the 1970’s. It presents even more difficulty if you try to reproduce some of the projects in it today.


The world of 1963 was not as safe as our world today. Kids rode bicycles with no protective gear. Dentists gave kids mercury to play with. You could eat a little paint or have asbestos in your ceiling, and no one really worried about it.

That means some of the gear and experiments Barrett covers are difficult to recreate today or are just plain dangerous. For example, he suggests getting sulphuric acid at the drugstore. I don’t suggest you call your local Walgreens and ask them for it. The arc furnace — which could melt a nail, as I found out first hand — used a salt water rheostat which was basically an AC power cord with one conductor cut and passed through and open glass jar containing salt water! Fishing sinkers kept the wire from moving about (you hoped) and I suppose the chlorine gas probably emitted didn’t do me any permanent harm.

I was delighted to see that [Windell Oskay] has revised and rebuilt this great old book into a new edition. As much of the original as possible is still present, but with notes about how to work around material you can’t get any more or notes about safety.

Continue reading “Books You Should Read: The Annotated Build-It-Yourself Science Laboratory”