Mini Linear Actuators From DVD Drive Parts

For many years now a source for some of the smallest and cheapest home made CNC mechanisms has been the seemingly never-ending supply of surplus CD and DVD-ROM drives. The linear actuator that moves the laser may not be the longest or the strongest, but it’s free, and we’ve seen plenty of little X-Y tables using CD drives. It’s these mechanisms that [Nemo404] has taken a little further, freeing the lead screw and motor from the drive chassis and placing them in a 3D-printed enclosure for a complete linear actuator that can be used in other projects. (Video, embedded below.)

There seems to be no positional feedback, not even the limit switch that would grace a typical CD drive, but aside from that it makes for a compact unit. There are two versions, one for a linear bearing and the other for the brass bushes found in CD drives. It’s unclear how strong the result is, but it appears to be strong enough to demonstrate lifting a small container of screws.

Should you need to make your own actuator then aside from the easy-to-obtain old CD drive the files can be found on Thingiverse. And introduce yourself to the world of CD drives for CNC machines by taking a look at this mill.

Thanks [BaldPower] for the tip!

Continue reading “Mini Linear Actuators From DVD Drive Parts”

XBox HD-DVD-ROM On Mac And PC


HD-DVD drives are getting closer, but aren’t terribly easy to come buy – yet. [Dan] over at uneasy silence let us know that he cracked open an XBox 360 HD DVD Drive and plugged it into a windows box and a mac. With a light application of some drivers, they got the drive working pretty easily – the snag? You’ll need a mini-ata adapter if you want to mount it internally. (And there’s apparently no HD-DVD software support for mac… yet.)

[you can just use it as a USB drive.]

A Stirling Engine From Minimal Parts

The model Stirling engine is a staple of novelty catalogues, and we daresay that were it not for their high price there might be more than one Hackaday reader or writer who might own one. All is not lost though, because [jirka.luftner] has posted one on Instructables which eschews the fancy machined brass of the commercial models and achieves the same result with an array of salvaged parts.

The main cylinder is a former apple drops tin with a cardboard displacer, and the CD/DVD flywheel is mounted on either a 3D printed or cut out frame with the secondary cylinder cut into it. A diaphragm for the secondary cylinder is taken from a rubber glove, and the cranks come courtesy of bent wire.

A slight mystery of this design is that it appears not to have a regenerator, or heat store. This usually lies in the path between the two cylinders to improve efficiency by taking the heat from the air as it passes in-between the two, and returning it when it goes the other way. We’re guessing that on an engine this small it’s the tin itself which performs this function. Either way this is a neat little engine that shouldn’t break the bank.

If this has whetted your appetite, you’ll be pleased to hear it’s not the first Stirling engine we’ve seen made from what was lying around.

Laser Engraver Uses All Of The DVD Drive

For the last ten to fifteen years, optical drives have been fading out of existence. There’s little reason to have them around anymore unless you are serious about archiving data or unconvinced that streaming platforms will always be around. While there are some niche uses for them still, we’re seeing more and more get repurposed for parts and other projects like this tabletop laser engraver.

The build starts with a couple optical drives, both of which are dismantled. One of the shells is saved to use as a base for the engraver, and two support structures are made out of particle board and acrylic to hold the laser and the Y axis mechanism. Both axes are made from the carriages of the disassembled hard drives, with the X axis set into the base to move the work piece. A high-output laser module is fitted to the Y axis with a heat sink, and an Arduino and a pair of A4988 motor controllers are added to the mix to turn incoming G-code into two-dimensional movement.

We’ve actually seen a commercial laser engraver built around the same concept, but the DIY approach is certainly appealing if you’ve got some optical drives collecting dust. Otherwise you could use them to build a scanning laser microscope.

Continue reading “Laser Engraver Uses All Of The DVD Drive”

Decoding Compact Disc Audio From Scratch

In the rare case we listen to an audio CD these days, we typically rely on off-the-shelf hardware to decode the 1s and 0s into the dulcet tones of Weird Al Yankovic for our listening pleasure. [Lukas], however, was recently inspired to try decoding the pits and lands of a CD into audio for himself.

A fair bit goes into decoding Red Book digital audio.

[Lukas] did the smart thing, and headed straight to the official Red Book Audio CD standard documents freely available on archive.org. That’s a heck of a lot cheaper than the €345 some publishers want to charge. Not wanting to use a microscope to read the individual pits and lands of the disc, [Lukas] used a DVD player. The electrical signals from the optical pickup were captured with an oscilloscope. 4 megasamples of the output were taken at a rate of 20 megasamples per second. This data was then ported over to a PC for further analysis in Python.

[Lukas] steps us through the methodology of turning this raw data of pits and lands into real audio. It’s a lot of work, and there are some confusing missteps thanks to the DVD player’s quirks. However, [Lukas] gets there in the end and shows that he truly understands how Red Book audio really works.

It’s always interesting to see older media explored at the bare level with logic analyzers and oscilloscopes. If you’ve been doing similar investigative work, don’t hesitate to drop us a line! 

An 8-bit ISA card being plugged into a motherboard

Reverse-Engineering An ISA Card To Revive An Ancient CD-ROM Drive

Being an early adopter is great if you enjoy showing off new gadgets to your friends. But any new technology also brings the risk of ending up at the wrong side of a format war: just ask anyone who committed to HD-DVD fifteen years ago. If, on the other hand, you were among the few who invested in CD-ROM when it was first released in the mid-1980s, you definitely made the right choice when it came to storage media. However, it was a bit of a different story for the interface that hooks up the CD drive to your computer, as [Tech Tangents] found out when he managed to get his hands on a first-generation CM100 drive. (Video, embedded below.)

That wonderful piece of 1985 technology is not much smaller than the IBM PC it was designed to connect to, and it originally came with its own CM153 ISA interface card. But while most eBay sellers recognized the historic value of a pioneering CD-ROM drive, the accompanying PC was typically a dime-a-dozen model and was thrown out with the rare interface card still inside. Even after searching high and low for over a year, the only information [Tech Tangents] could find about the card was a nine year old YouTube video that showed what the thing looked like.

A 3D rendered image of an 8-bit ISA cardLuckily, the maker of that video was willing to take high-resolution pictures of the card, which allowed [Tech Tangents] to figure out how it worked. As it turned out, the card was entirely made from standard 7400 series logic chips as well as an 8251 USART, which meant that it should be possible to design a replacement simply by following all the traces on the board. [Tech Tangents] set to work, and after a few weeks of reverse-engineering he had a complete schematic and layout ready in KiCAD.

After the PCBs were manufactured and populated with components, it was time to test the new card with the old drive. This wasn’t a simple process either: as anyone who’s tried to get obscure hardware to work in MS-DOS will tell you, it involves countless hours of trying different driver versions and setting poorly documented switches in CONFIG.SYS. Eventually however, the driver loaded correctly and the ancient CD-ROM drive duly transferred the files stored on a Wolfenstein 3D disk.

If you’re lucky enough to own a CM100 or a similar drive from that era, you’ll be happy to know that all design files for the CM153 clone are available on GitHub. This isn’t the first time someone has had to re-create an interface board from pictures alone: we’ve seen a similar project involving a SCSI card for a synthesizer. Thanks for the tip, [hackbyte]!

Continue reading “Reverse-Engineering An ISA Card To Revive An Ancient CD-ROM Drive”

DVD Drives Turned Into Microscopes

With the advent of streaming services, plenty of people are opting to forego the collection of physical media. In turn, there are now a lot of optical drives sitting unused in parts bins and old computers. If you’d like something useful to do with this now-obsolete technology, you can have a try at turning one into a laser microscope.

This build requires two DVD pickups. By scanning once horizontally and once vertically and measuring the returning light from the DVD laser, an image can be created. For this build, the second pickup is used to move the object itself. The entire device is controlled by an Analog Discovery 2, although this principle could be ported to other microcontroller platforms. Thanks to the extremely fine laser in a DVD and the precise movements of the motors found in the control machinery, the images obtained using this method have the potential to be more detailed than comparable visible light microscopes.

While this isn’t quite scanning electron microscope territory, it’s good enough to clearly image the internal workings of a de-capped integrated circuit. Something like this could be indispensable for reverse-engineering ICs or troubleshooting other comparably small electronics, with resolutions higher than can typically be obtained with visible light microscopes. We’ve even seen similar builds in the past which build microscopes like this as dedicated lab equipment.