Hackaday Prize Entry: USB GSM GPS 9DOF SD TinyTracker Has All the Acronyms

[Paul] has put together an insanely small yet powerful tracker for monitoring all the things. The USB TinyTracker is a device that packages a 48MHz processor, 2G modem, GPS receiver, 9DOF motion sensor, barometer, microphone, and micro-SD slot for data storage. He managed to get it all to fit into a USB thumb drive enclosure, meaning that you can program it however you want in the Arduino IDE, then plug it into any USB port and let it run. This enables things like remote monitoring, asset tracking, and all kinds of spy-like activity.

One of the most unusual aspects of his project, though, is this line: “Everything came together very nicely and the height of parts and PCBs is exactly as I planned.” [Paul] had picked out an enclosure that was only supposed to fit a single PCB, but with some careful calculations, and picky component selection, he managed to fit everything onto two 2-layer boards that snap together with a connector and fit inside the enclosure.

We’ve followed [Paul’s] progress on this project with an earlier iteration of his GSM GPS Tracker, which used a Teensy and fit snugly into a handlebar, but this one is much more versatile.

A Simple, DIY GPS Tracker

Today, there are dozens of off-the-shelf solutions for a GPS tracking device. Most of them use GSM, some of them use satellites, and all of them are astonishingly inexpensive. If you want to track a car, dog, or your luggage, you’ve never had more options.

[Emilio] wanted to track his own car, and the original solution for this was a smartphone. This smartphone was also a good choice, as it’s a programmable GPS device connected to a cell network, but there had to be a simpler solution. It came in the form of an eight euro GPS module and a three euro GSM module (Google Translatrix right here). The rest of the hardware is an ATMega48V [Emilio] had sitting around and a 2500 mAh lithium cell. It’s a cellular tracker make out of eleven euro’s worth of hardware and some junk in a drawer.

There are only a few caveats to this hardware. First, the ATmega48V only has one UART. This is connected to the GPS module at 9600, 8N1. The connection to the GSM M-590 module is only 2400 bps, and slow enough for a bitbanged UART. This hardware is soldered to a piece of perfboard, thus ending the hardware part of this build.

The software is a little more complex, but not by very much. The GPS part of the firmware records the current latitude and longitude. If the GSM module receives a call, it replies with an SMS of the current GPS coordinates and a few GPS coordinates seen earlier. Of course, a pre-paid SIM is required for this build, but those are cheap enough.

Not even ten years ago, a simple, DIY GPS tracker would have cost a small fortune. Now that we have cheap GPS modules, GSM modules, and more magical electronics from the East, builds like this are easy and cheap. What a magical time to be alive.

A Full Stack GPS Receiver

The usual way of adding GPS capabilities to a project is grabbing an off-the-shelf GPS module, plugging it into a UART, and reading the stream of NMEA sentences coming out of a serial port. Depending on how much you spend on a GPS module, this is fine: the best modules out there start up quickly, and a lot of them recognize the logical AND in ITAR regulations.

For [Mike], grabbing an off-the-shelf module is out of the question. He’s building his own GPS receiver from the ground up using a bit of hardware and FPGA hacking. Already he’s getting good results, and he doesn’t have to futz around with those messy, ‘don’t build ballistic missiles’ laws.

The hardware for this build includes a Kiwi SDR ‘cape’ for the BeagleBone and a Digilent Nexus-2 FPGA board. The SDR board captures raw 1-bit samples taken at 16.268 MHz, and requires a full minute’s worth of data to be captured. That’s at least 120 Megabytes of data for the FPGA to sort through.

The software for this project first acquires the GPS signal by finding the approximate frequency and phase. The software then locks on to the carrier, figures out the phase, and receives the 50bps ‘NAV’ message that’s required to find a position solution for the antenna’s location. The first version of this software was exceptionally slow, taking over 6 hours to process 200 seconds of data. Now, [Mike] has improved the channel tracking code and made it 300 times faster. That’s real-time processing of GPS data, using commodity off-the-shelf hardware. All the software is available on the Gits, making this a project that can very easily be replicated by anyone. We would expect the US State Department or DOD to pay [Mike] a visit shortly.

Of course, this isn’t the first time someone has built a GPS receiver from scratch. A few years ago, less than 1-meter accuracy was possible with an FPGA and a homebrew RF board.

Custom Data Writer Board For 1996 Plane’s GPS

[Dmitry Grinberg] recently bought a Cessna 150 that contained an old IFR-certified GPS from 1996, the KLN89B. The GPS unit contains a database which by law has to be kept up-to-date for IFR flight. The problem was that, while Honeywell still supplied the data in electronic form, [Dmitry] had no way to update the GPS. The original ways for doing it are either no longer supported, too expensive and a pain to do, or not available to him due to the way his GPS was installed.

Two of those ways involved removing a data card which can legally be slid out of the GPS’s front panel. The data card is what stores all the data but it’s a proprietary card and there’s no reader for it. [Dmitry]’s solution was therefore to make his own reader/writer board.

Continue reading “Custom Data Writer Board For 1996 Plane’s GPS”

Barely-There GSM GPS Tracker

What’s the most un-intrusive GPS you’ve ever seen? How about for a bike? Redditor [Fyodel] has built a Teensy-based GPS/GSM tracker that slides into your bike’s handlebars and really is out of sight.

The tracker operates on T-Mobile’s 2G service band — which will enable the device to work until about 2020 — since AT/T is phasing out their service come January. Since each positioning message averages 60 bytes, an IoT data plan is sufficient for moderate usage, with plans to switch over to a narrow-band LTE service when it becomes more affordable. [Fyodel] admits that battery life isn’t ideal at the moment, but plans to make it more efficient by using a motion sensor to ensure it’s only on when it needs to be.

Continue reading “Barely-There GSM GPS Tracker”

MP3 Player and Handheld GPS is an Odd Combo Work Of Art

We think [Brek Martin] set out to build a handheld GPS and ended up adding an mp3 Player to it. Regardless, it’s beautifully constructed. Hand built circuit boards and even a custom antenna adorn this impressive build.

The core of the build is a 16 bit microcontroller a dsPIC33FJ128GP802 from Microchip. It’s a humble chip to be doing so much. It uses a UBlox NEO-6M positioning module for the location and a custom built QFH antenna built after calculations done with an online calculator for the GPS half. The audio half is based around a VLSI VS1003b decoder chip.

The whole build is done with protoboard. Where the built in traces didn’t suffice enamel and wire wrap wire were carefully routed and soldered in place. There’s a 48pin LQFP package chip soldered dead bug style that’s impressive to behold.  You can see some good pictures in this small gallery below.

Continue reading “MP3 Player and Handheld GPS is an Odd Combo Work Of Art”

Puzzlingly Simple Tutorial On GPS Time Corrected Clock

We’re not sure if [Derek Lieber] is messing with us or proving a point. Why are you doing this [Derek]? We know there’s technically enough information to build the clock. You even included the code. Couldn’t you have at least thrown in a couple of words? Do we have to skip straight to mediaglyphics?

Anyway, if we follow the equation. The equation… If you take a gps module, a 7 segment display with an HT16K33 backpack, a digital potentiometer, a piezo, and a boarduino we suppose we could grudgingly admit that these would all fit together to make a clock. We still don’t like it though, but we’ll admit that the nice handmade case was a nice touch, and that the pictures do give us enough details to do it ourselves.

It was also pretty cool when you added the Zelda theme song as an alarm sound. Also pretty neat that, being GPS corrected, there’s no need to ever set the time. We may also like the simplicity of the only inputs being the potentiometer, which is used to set the alarm time. It’s just. Dangit [Derek]. Nice clock build, we like it.