Inside America’s Last Morse Code Station

The Titanic famously (or infamously) used Morse code to call out in distress at the end of its final voyage. Ships at sea and the land-based stations that supported them used Morse code for decades, but with the growing use of satellites, maritime Morse code ended in 1999. With one notable exception. [Saahil Desai] writing in the Atlantic tells the story of  America’s last Morse code station, KPH just north of San Francisco.

In fact, KPH did shut down in 1997 as part of the wind down of Morse code in ocean vessels. But some radio enthusiasts, including [Tom Horsfall] and [Richard Dillman], have brought the venerable station back to life. The radio squirrels, as they call themselves, dutifully send news and weather every Saturday to anyone interested in listening. They also exchange radio traffic, primarily with the SS Jeremiah O’Brien, a World War II-era ship parked nearby. N2FQ visited the station and operated the station on video, which you can see below. Or, check out the tour in the second video, below.

Continue reading “Inside America’s Last Morse Code Station”

A Toe-Tappin’ Set Of Morse Code Pedals

What’s the worst thing about traditional Morse keyers? If you ask us, it’s the fact that you have to learn how to do two distinct things with one hand, and switch between them quite quickly and often.

This set of Morse code foot pedals is meant for those who are unable to use traditional methods of keying. It uses a retrofitted wireless keyboard to read Z and X as dit and dah, respectively, and convert the Morse code into text.

[Tevendale_Engineering] started by getting the controller out of the keyboard and figuring out which combination of pads sends Z and X. Then they wired those up with copper tape. The pedals themselves are made from 1/2″-thick wood, foam core board, and Nerf bullets to provide springiness.

There’s no solder here; it’s all copper tape and alligator clip test leads. So if this isn’t your hack for the day, we don’t know what is.

Not so great at Morse code? Here’s a clock that will train you on the numbers, at least.

Machine Teaches Morse Code

If you are a ham radio operator of a certain age, you probably remember ads for “The Instructograph,” a mechanical device for learning Morse code. [Our Own Devices] has an ancient specimen of the machine and shows us how it works in the video below. The machine is a model of simplicity. You wind up a spring-driven motor like you would for an old record player or music box. A slider sets the playback rate, and paper tape starts to spin.

The paper tape looks like computer tape, but since it only has literal long and short notches, it has two distinct sides. When you learned one set of messages, you could flip the tape over and get more practice that way. How did the machine read the paper tape? With a mechanical contact. Literally, if the paper had a hole in it, you made the circuit. If it didn’t, the circuit was broken. A buzzer and batteries or some other kind of sounder was all you needed.

The company was in business for 50 years. The newer versions had more electronics, but they always used the paper tape mechanism to store the code practice sessions. A 1962 ad noted that the machine could play back the tapes from three words a minute up to 40. You could buy or rent the machine, and we always assumed it was pretty pricey for its day. Around 1965, a new unit would cost $53 but did not include a headset or a key. So that was actually more reasonable than we expected. In 1965, a brand-name clock radio cost about $50, so it wasn’t any more than that.

Everyone has their own favorite method for learning code, especially [Ludwig Koch]. At least you don’t have to learn Alex-style.

Continue reading “Machine Teaches Morse Code”

Gen Tojo’s Teeth: Morse Code Shows Up In The Strangest Places

The Baader-Meinhof effect is the common name for what scientists call frequency illusion. Suppose you are watching Star Trek’s Christopher Pike explain how he makes pasta mama, and you’ve never heard of it before. Immediately after that, you’ll hear about pasta mama repeatedly. You’ll see it on menus. Someone at work will talk about having it at Hugo’s. Here’s the thing. Pasta mama was there all along (and, by the way, delicious). You just started noticing it. We sometimes wonder if that’s the deal with Morse code. Once you know it, it seems to show up everywhere.

Gen. Hideki Tojo in custody in 1947

One of the strangest places we’ve ever heard of Morse code appearing is the infamous case of Tojo’s teeth. If you don’t remember, General Hideki Tojo was one of the main “bad guys” in the Pacific part of World War II. In particular, he is thought to have approved the attack on Pearl Harbor, which started the American involvement in the war globally. Turns out, Tojo would be inextricably tied to Morse code, but he probably didn’t realize it.

The Honorable Attempt

At the end of the war, the US military had a list of people they wanted to try, and Tojo was near the top of their list of 40 top-level officials. As prime minister of Japan, he had ordered the attack that brought the US into the war. He remained prime minister until 1944, when he resigned, but the US had painted him as the face of the Japanese enemy. Often shown in caricature along with Hitler and Mussolini, Tojo was the face of the Japanese war machine to most Americans.

In Allied propaganda, Tojo was one of the “big three”

When Americans tried to arrest him, though, he shot himself. However, his suicide attempt failed. Reportedly, he apologized to the American medics who resuscitated him for failing to kill himself. Held in Sugamo Prison awaiting a trial, he requested a dentist to make him a new set of dentures so he could speak clearly during the trial.

Continue reading “Gen Tojo’s Teeth: Morse Code Shows Up In The Strangest Places”

An orange m5stickc plus strapped to a wrist in the foreground with the persons other hand pressing down on the top of an installed hat, communicating with another m5stickc plus in the background on the table.

M5StickC Turned Wearable Morse Code Trainer

Have you ever felt the options for Morse code communication were too limited? Well, look no further than [marsPRE]’s open source WristMorse communicator that can connect over WiFi, can act as a Bluetooth keyboard or just be used as a Morse Code trainer.

a 'hat' for an m5stickc plus with a single row pin header exposted, a 2.5mm jack and two capacitive touch buttons on the top and bottom of the hat.

[marsPRE] uses the M5StickC Plus as the base device and attaches a custom “hat” consisting of a 2.5 mm plug for a radio connection and two capacitive touch paddles that act as the Morse Code keyer. The add-on is housed in what looks like a custom 3D print and hangs off of the end of the M5StickC Plus, connecting the hat through an eight 0.1 inch pin header.

Using the M5StickC Plus allows [marsPRE] to focus on the software, providing different options for training, communication and even using the device as a Bluetooth keyboard. The two touch sensors allow for a semi automatic keying, with the top sensor used for long dashes and the bottom sensor used for short dashes.

[marsPRE] took inspiration from the Morserino-32 and has made the wrist morse code trainer open source software and available through GitHub for anyone wanting to take a look. Morse code may an old encoding method but it’s one that’s worthy of respect. You never know when you might need to send a message from your dreams or to translate spoken word Morse code.

Continue reading “M5StickC Turned Wearable Morse Code Trainer”

Morse Code Clock For Training Hams

It might seem antiquated, but Morse code still has a number of advantages compared to other modes of communication, especially over radio waves. It’s low bandwidth compared to voice or even text, and can be discerned against background noise even at extremely low signal strengths. Not every regulatory agency requires amateur operators to learn Morse any more, but for those that do it can be a challenge, so [Cristiano Monteiro] built this clock to help get some practice.

The project is based around his favorite microcontroller, the PIC16F1827, and uses a DS1307 to keep track of time. A single RGB LED at the top of the project enclosure flashes the codes for hours in blue and minutes in red at the beginning of every minute, and in between flashes green for each second.

Another design goal of this build was to have it operate with as little power as possible, so with a TP4056 control board, single lithium 18650 battery, and some code optimization, [Cristiano] believes he can get around 60 days of operation between charges.

For a project to help an aspiring radio operator learn Morse, a simple build like this can go a long way. For anyone else looking to build something similar we’d note that the DS1307 has a tendency to drift fairly quickly, and something like a DS3231 or even this similar Morse code clock which uses NTP would go a long way to keeping more accurate time.

Continue reading “Morse Code Clock For Training Hams”

Translating And Broadcasting Spoken Morse Code

When the first radios and telegraph lines were put into service, essentially the only way to communicate was to use Morse code. The first transmitters had extremely inefficient designs by today’s standards, so this was more a practical limitation than a choice. As the technology evolved there became less and less reason to use Morse to communicate, but plenty of amateur radio operators still use this mode including [Kevin] aka [KB9RLW] who has built a circuit which can translate spoken Morse code into a broadcasted Morse radio signal.

The circuit works by feeding the signal from a microphone into an Arduino. The Arduino listens for a certain threshold and keys the radio when it detects a word being spoken. Radio operators use the words “dit” and “dah” for dots and dashes respectively, and the Arduino isn’t really translating the words so much as it is sending a signal for the duration of however long each word takes to say. The software for the Arduino is provided on the project’s GitHub page as well, and uses a number of approaches to make sure the keyed signal is as clean as possible.

[Kevin] mentions that this device could be used by anyone who wishes to operate a radio in this mode who might have difficulty using a traditional Morse key and who doesn’t want to retrain their brain to use other available equipment like a puff straw or a foot key. The circuit is remarkably straightforward for what it does, and in the video below it seems [Kevin] is having a blast using it. If you’re still looking to learn to “speak” Morse code, though, take a look at this guide which goes into detail about it.

Thanks to [Dragan] for the tip!

Continue reading “Translating And Broadcasting Spoken Morse Code”