Olin College Penny Press

Olin Penny Press

Inspired by souvenir penny presses, [Robert] built the Olin College penny press. This machine stamps out coins with the school’s name and a variety of other patterns. He built it as part of a mechanical structures course, with the goal of designing something that used large forces.

Crushing a penny takes about five tons of force. To deliver that force, [Robert] used a 1 horsepower motor coupled to a custom 1190:1 reduction drive train, which consisted of sprockets, gears, and chains. The aluminium frame supporting the drive train also had to be designed to withstand large forces.

This required of a lot of custom parts, which were made using a CNC mill, a water jet cutter and a mill. All of the CAD drawings are available for anyone who wants to replicate the design.

This beast of a machine weighs about 90 pounds and can squish 12 pennies every minute. Olin College installed the penny press on their campus for anyone to use for free.

Big Chemistry: From Gasoline To Wintergreen

Most of us probably have some vivid memories of high school or college chemistry lab, where the principles of the science were demonstrated, and where we all got at least a little practice in experimental methods. Measuring, diluting, precipitating, titrating, all generally conducted under safe conditions using stuff that wasn’t likely to blow up or burn.

But dropwise additions and reaction volumes measured in milliliters are not the stuff upon which to build a global economy that feeds, clothes, and provides for eight billion people. For chemistry to go beyond the lab, it needs to be scaled up, often to a point that’s hard to conceptualize. Big chemistry and big engineering go hand in hand, delivering processes that transform the simplest, most abundant substances into the things that, for better or worse, make life possible.

To get a better idea of how big chemistry does that, we’re going to take a look at one simple molecule that we’ve probably all used at one time or another: the common artificial flavoring wintergreen. It’s an innocuous ingredient in a wide range of foods and medicines, but the infrastructure required to make it and all its precursors is a snapshot of just how important big chemistry really is.

Continue reading “Big Chemistry: From Gasoline To Wintergreen”

Overclocking And Watercooling The TI-84, Just Cause

The TI-84 is an enduring classic – the calculator that took many through high school, college and beyond. A hacker’s favorite, it’s been pushed to the limits in all sorts of ways. The crew at [Linus Tech Tips] decided to join in the fun, overclocking a TI-84 Plus and adding water cooling to boot. 

The TI-84 uses a simple resistor capacitor circuit to generate its clock, making it overclocking it a cinch. By changing the resistor value in the circuit, the clock can be made to run faster. The team have some issues with pads delaminating from the PCB, but manage to sub in a trimpot which lets the clock be changed on the fly. A boost of 10MHz over stock gets the calculator operating at 26MHz, with notably quicker performance in the TI port of Doom 2. Without accurate measurement of CPU temps, it’s hard to say whether watercooling the calculator is justified. However, the team do a great job of entirely overengineering the solution, with a custom-made cooling block hooked up to a massive spherical reservoir.

With the stability issues inherent in overclocking, and the unwieldy watercooling tubes, it’s not a good hack in the practicality sense. It is, however, quite amusing, and that’s always worth something. TI calculators have long been targets for hackers, and you can even get them online if you so desire. Video after the break.

Continue reading “Overclocking And Watercooling The TI-84, Just Cause”

Wii Remote Controling The Vehicle You’re Riding In

Make sure your health insurance premiums are all paid up; if you decide to replicate this project you may need it. [Corey], [Kris], and [Jess] built their own go cart which is controlled with a Wii remote. The website has a poor navigation scheme, but if you hover over the horizontal menu bar you can get quite a bit of information about the build.

The cart has two motors which use a chain to drive each of the rear wheels. A pair of H-bridge controllers let the Arduino interface with them. It’s also has a Bluetooth module that makes it a snap to pull accelerometer data from the Wii remote. The front end looks like it uses rack and pinion steering, but you won’t find a pinion or a steering column. Instead, a linear actuator is mounted parallel to the rack, moving it back and forth at the command of the Arduino.

We can’t help but think back to silent movies where the steering wheel comes loose in the middle of a car chase. See if you get the same image while watching the demo after the break. This doesn’t seem quite as dangerous as adding remote control to a full-sized automobile, but we’ve played MarioKart Wii before and know how lousy the accelerator performance can be. Hopefully the firmware kills the motors if the batteries in the controller die.

Continue reading “Wii Remote Controling The Vehicle You’re Riding In”

Hanky-Deprived Drones Taste Whale Snot For Science

A whole world of biomass floats in the boogers of a whale’s exhaust, and it’s a biologist’s dream to explore it. Whale snot carries everything from DNA samples to hormone signatures. But getting close enough to a surfacing whale for long enough to actually sample this snot turns out to be a nightmare when done by boat. Researcher [Iain Kerr] and a team from Olin College of Engineering thought, why not use a drone instead? Behold, the Snotbot was born!

Snotbot is essentially a petri-dish-equipped commercial drone that users can pilot into the exhaust of a whale to collect samples before the cetacean dives back under. After 7 missions and over 500 collected samples, Snotbot is putting-to-rest years of frustration from researchers anticipating their next chance for a shot of snot. Along the way, the team have also leveraged it to image the whale’s fluke (a fingerprint equivalent), drop underwater mics, and collect poo samples. As opposed to darts, Snotbot is non-invasive, and the whales don’t seem to mind (or even notice) who’s downstream of their boogers.

Drones are almost ubiquitous at this point in our lives–to the point where they now fall under regulations by the US government. With so many of us building our own drones at home, it’s wonderful to see groups starting to ask the next question: cool drone; now what? With reliable drones at prices that are within reach for the everyday citizen, we’re excited that we will see dozens of applications that leverage this new skyward-bound platform over the coming years. If you can’t wait, have a quick look back in time, where drones are doing maritime deliveries and blowing up debris.

Engineers Create Super-Hard Whack-a-Mole

Is your latest project driving you mad? Are you subject to occasional fits of rage? This project might help: for a class called elecanisms at Olin College, [Forrest] and a team of three other students made a whack-a-mole arcade game that lets you vent your rage on a helpless furry animal by whacking it with a large hammer. He built most of it from scratch, creating his own solenoid driver and LED sensor board. However, there is a twist in here that gives the moles a fighting chance: there is an accelerometer built into the hammer that lets them know that your heavy hammer of doom is approaching.

Will they escape before your righteous wrath descends upon them? That depends on how you decide to set it up, and how merciful you want to be. The build even includes a coin-operated pay-to-play slot. They kept the cost low at a penny, but this is just begging to be installed at the local pub to rake in those quarters.

This course has been the source of a few projects that we have featured before on Hackaday, including the Confectionary Canon, which tracks your face and fires marshmallows right into your gaping maw.

Continue reading “Engineers Create Super-Hard Whack-a-Mole”

The Face-Tracking Confectionery Cannon!

A team of mechanical and electrical engineering students at Olin College came up with a very fun semester project — a pneumatic powered marshmallow cannon that can track faces, and aim for the mouth!

The device — dubbed the Confectionery Canon — is an impressive mechanical build which required many of Olin College’s manufacturing resources such as the laser cutter, the mill, and the lathe. The majority of the device was made out of acrylic, which was chosen for easy laser cutting, and affordability. Specific aluminum pieces provide strength and were made using mostly scrap found in the shop.

Four servos, a webcam, a solenoid and an Arduino Uno make up the electrical system, which uses Python and OpenCV to track faces (GitHub). A PVC tank is used as the pneumatic reservoir, charged with a safety release valve at 30PSI. To fire the cannon, a sprinkler valve is controlled by a beefy solenoid. It currently only has a magazine capacity of 4 large marshmallows, but the team is planning on upgrading soon.

They have put together a great website with tons of information on the project, and following the break is a fun promo video they made for the project — they even got the VP of  the college to try it!

Continue reading “The Face-Tracking Confectionery Cannon!”