3D Audio Imaging With A Phased Array Microphone

Remember the scene from Blade Runner, where Deckard puts a photograph into a Photo Inspector? The virtual camera can pan and move around the captured scene, pulling out impossible details. It seems that [Ben Wang] discovered how to make that particular trick a reality, but with audio instead of video. The secret sauce isn’t a sophisticated microphone, but a whole bunch of really simple ones. In this case, it’s 192 of them, arranged on long PCBs working as the spokes of a wall-art wheel. Quite the conversation piece.

Continue reading “3D Audio Imaging With A Phased Array Microphone”

Reverse Engineering A Phased Array System Reveals Surprising Details

The term “phased array” has been around for a long time, but in recent years we’ve heard more and more about the beam shaping that’s possible with phased array antennae. In the video below the break, [The Signal Path] breaks down a Qualcomm 60GHz WiGig unit, and does a deep dive, even looking at the bare silicon and an x-ray of an antenna.

An X-Ray of the antenna shows the intricate design

Some fascinating highlights include how not only the data signal is sent to the antennae through a standard coaxial cable, but so are control signals and a base clock frequency. [The Signal Path] explains how the manufacturer chose to use what’s called a SuperHeterodyne (aka “superhet”) architecture, which is not all that different from those used in traditional amateur radio transceivers. In theory, anyway.

Another element that is discussed is how the PCB’s themselves are used as waveguides, inductors, and transmission line matches, among other countless little hacks to fit a rather complex system into a truly diminutive space.

If you’re not familiar the concept behind phased arrays, check out this article we published in 2019 that shows how phased arrays can steer a beam without any moving parts. It’s quite fascinating!

Continue reading “Reverse Engineering A Phased Array System Reveals Surprising Details”

Hackaday Podcast 158: Phased Array Physics, CRTs Two Ways, A Micro Microcontroller, And A Surgically Implanted Red Herring

Join Editor-in-Chief Elliot Williams and Staff Writer Dan Maloney as they take a look at the week’s top stories, taken straight off the pages of Hackaday. What happens when you stuff modern parts into a 90’s novelty PC case? Nothing good, but everything awesome! Is there any way to prevent PCB soil moisture sensors from being destroyed by, you know, soil moisture? How small is too small for a microcontroller, and who needs documentation anyway? We also cast a jaundiced eye — err, ear — at an electronic cheating scandal, and if you’ve ever wondered how phased arrays and beam steering work, gazing into a pan of water might just answer your questions. We also share all our soldering war stories, and hey — what’s with all these CRT projects anyway?

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct Download (52 MB, but sounds like at least 58 MB!)

Continue reading “Hackaday Podcast 158: Phased Array Physics, CRTs Two Ways, A Micro Microcontroller, And A Surgically Implanted Red Herring”

Bend It Like (Sonar) Beacon With A Phased Array

Ultrasonic transducers are incredible, with them you can detect distances, as well as levitate and peer through objects. They can emit and receive ultrasonic soundwaves (typically above 18khz) and just like all waves, they can be steered via a phased array. [Bitluni] was trying to accurately measure distances but found the large field of view of the sensor was just too imprecise, so he made a phased array of transducers.

The inspiration came from a Hackaday Supercon talk from 2019 about phased arrays. [Bitluni] walks through an excellent explanation of how the array works with a bucket of water and his finger, as well as a separate simulation. By changing the phase offset of the different array members, the beam can effectively be steered as interference muffs the undesired waves. Using a set of solenoids, he created a test bench to validate his idea in a medium he could see; water. The solenoids fire a single pulse into the water creating a wave. You can see the wave move in the correct direction in the water, which validates the concept. A simple PCB sent off to a fab house with a stencil offers a surface to solder the transducers and drivers onto. An ESP32 drives the 8 PWM signals that go to the transmitters and reads in the single receiver via a small amplifier. Still not content to let the idea be unproven, he sets up the receiver on his CNC gantry and plots the signal strength at different points, yielding beautiful “heat maps.”
bitluni's heatmap for his sonar array

It sweeps a 60-degree field in front of it at around 1-3 frames per second. As you might imagine, turning sound wave reflections into distance fields is a somewhat noisy affair. He projects the sonar display on top of what we can see in the camera and it is fun to see the blobs line up in the correct spot.

We noticed he built quite a few boards, perhaps in the future, he will scale it up like this 100 transducer array? Video after the break.

Continue reading “Bend It Like (Sonar) Beacon With A Phased Array”

Ultrasonic levitation rig.

Phased Array Levitation Is Science In Action

Levitation may seem like magic. However, for certain objects, and in certain conditions, it’s actually a solved technology. If you want to move small particles around or do experiments with ultrasonic haptic feedback, you might find SonicSurface to be a useful platform for experimentation.

The build comes to us from [UpnaLab], and is no small feat of engineering. It packs in 256 ultrasonic emitters in a 16×16 grid, with individual phase control across the entire panel. This allows for the generation of complex ultrasonic wave fields over the SonicSurface board. Two boards can be paired together in a vertically opposed configuration, too. This allows the levitation of tiny particles in 3D space.

As you might expect, an FPGA is pressed into service to handle the heavy lifting – in this case, an Altera CoreEP4CE6. Commands are sent to the SonicSurface by a USB-to-serial connection from an attached PC.

The board is largely limited to the levitation of small spherical pieces of foam, with the ultrasonic field levitating them in midair. However, the project video shows how these tiny pieces of foam can be attached to threads, tapes, and other objects in order to manipulate them with the ultrasonic array.

It may not be a simple project, but it serves as a great basis for your own levitation experiments. Of course, if you want to start smaller, that’s fine too. If you come up with any great levitation breakthroughs of your own, be sure to let us know.

Hackaday Podcast 119: Random Robot Writing, Slithering Snake Shenanigans, And Phased Array Phenomena

Hackaday editors Mike Szczys and Elliot Williams pick up on the neatest hacks you may have missed. We start off with another “What’s that Sound?” so put your geeky-ears to the test and win a Hackaday Podcast T-shirt. Here are a couple of classic hacks to bring you joy: music based on Markov chains, and a squiggly take on the classic Nokia game of snake. For the more hardcore science geeks we dive into the B Meson news coming out of CERN’s physics experiments. And after taking a detour in bristle-bot-based pen plotting, we unpack the hidden system of pipes that carry oil, gas, diesel, and more from the refinery to your region.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (The best 57 MB you’ll download all day!)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 119: Random Robot Writing, Slithering Snake Shenanigans, And Phased Array Phenomena”

A 60 GHz Phased Array

Our friend [Hunter Scott] gave a talk at a past Supercon about phased array antennas. He mentioned he was looking for collaborators to create an antenna with the SiBeam SB9210 chip. This is a specialized chip for WirelessHD, a more or less failed video streaming protocol, and it’s essentially an entire 60 GHz phased array on a chip with both transmit and receive capabilities. For $15, it seems like quite the bargain, and [Hunter] still wants to put the device to work.

The downside is that Lattice bought SiBeam and killed this chip — not surprising considering WirelessHD never really took off. However, [Hunter] says the chip was in some old smart TVs and laptops. If you can find replacement boards for those devices on the surplus market, you can get the chip and the supporting circuitry for a song.

Continue reading “A 60 GHz Phased Array”