Flexible Quadcopter Is Nearly Indestructible

We’ve all crashed quadcopters. It’s almost inevitable. Everything is going along fine and dandy ’till mother nature opens her big mouth a blows a nasty gust of wind right at you, pushing your quad into the side of a wall. A wall that happens to be composed of a material that is quite a bit harder than your quadcopter. “What if…” you ask yourself while picking up the pieces of you shiny new quad off the ground… “they made these things out of flexible material?”

Well, it would appear someone has done just that. The crash resistant quadcopter is composed of a flexible frame (obviously) which is held rigid with magnets. So the frame works just like the frame of your average quad. Until you crash it, of course. Then it becomes flexible.

The idea came from the wing of a wasp, which you can apparently crumple without damaging it. Be sure to check out the video below of the drone showing off its flexible frame, and let us know if you’ve seen any other types of flexible frame drones in the wild.

Thanks to [JDHE] for the tip!

Continue reading “Flexible Quadcopter Is Nearly Indestructible”

The World’s Lightest Brushless FPV Quadcopter

When a claim is made for something being the world’s lightest it is easy to scoff, after all that’s a bold assertion to make. It hasn’t stopped [fishpepper] though, who claims to have made the world’s lightest brushless FPV quadcopter. Weighing in at 32.4 grams (1.143 oz) it’s certainly pretty light.

The frame is a circular design cut from carbon-fiber-reinforced polymer, and on it are mounted four tiny brushless motors. In the center are the camera and battery on a 3D printed mount, as well as custom flight and speed controller boards. There are a series of posts detailing some of the design steps, and the result is certainly a capable aircraft for something so tiny. If you fancy experimenting with the design yourself, the files are available for download on the first page linked above.

There are two aspects to this build that make it interesting to us. First, the lightest in the world claim. We think someone will come along with something a bit lighter, and we can’t wait to see a lightest multirotor arms race. Good things come of technology races, which brings us to the second aspect. Governments are busy restricting the use of larger multirotors, to the extent that in some parts of the world all that will be available for non professionals will be sub-200g toy craft. Any project like this one which aims to push the boundaries of what is possible with smaller multirotors is thus extremely interesting, and we hope the community continue to innovate in this direction if only to make a mockery of any restrictions.

To get some idea of the sort of legislative measures we might be seeing, take a look at our coverage of a consultation in just one country.

$12 Quadcopter Frame from PVC Pipe

Flying ready-made quadcopters is fun. Eventually, though, most hackers get the urge to build their own. One of the most challenging parts is building a robust airframe. [Thomas Jarrett] has an interesting approach: he uses schedule 21 PVC pipe to build a sturdy airframe that is inexpensive and can house the craft’s electronics to boot. You can see a video of the sizeable aircraft, below.

The 1″ pipe is lightweight but sturdy and big enough to hold some circuitry. The rest is secured with Lexan. [Thomas] used off the shelf avionics, but it is obvious you could use the frame with your own choice of flight systems easily.

Perhaps the trickiest part is flattening the PVC for the motor mounts over a stove. The landing gear are also PVC, and formed in boiling water. Just be careful since hot PVC can give off nasty fumes (we aren’t experts on that, but it makes sense that it would be; you can watch a video about safety when heating PVC pipe). The total cost, including some prototyping parts, was under $300.

We’ve talked about building up drones in the past. If you don’t like PVC, you could always try old motherboards.

Continue reading “$12 Quadcopter Frame from PVC Pipe”

Reverse Engineering Quadcopter Protocols

Necessity is the mother of invention, but cheap crap from China is the mother of reverse engineering. [Michael] found a very, very cheap toy quadcopter in his local shop, and issued a challenge to himself. He would reverse engineer this quadcopter’s radio protocol. His four-post series of exploits covers finding the right frequency for the radio, figuring out the protocol, and building his own remote for this cheap toy.

[Michael] was already familiar with the capabilities of these cheap toys after reading a Hackaday post, and the 75-page, four language manual cleared a few things up for him. The ‘Quadro-Copter’ operated on 2.4GHz, but did not give any further information. [Michael] didn’t know what channel the toy was receiving on, what data rate, or what the header for the transmission was. SDR would be a good tool for figuring this out, but thanks to Travis Goodspeed, there’s a really neat trick that will put a 2.4GHz nRF24L01+ radio into promiscuous mode, allowing [Michael] to read the transmissions between the transmitter and quadcopter. This code is available on [Michael]’s github.

A needle in an electromagnetic haystack was found and [Michael] could listen in on the quadcopter commands. The next step was interpreting the ones and zeros, and with the help of a small breakout board and soldering directly to the SPI bus on the transmitter, [Michael] was able to do just that. By going through the nRF24 documentation, he was able to suss out the pairing protocol and read the stream of bytes that commanded the quadcopter.

What [Michael] was left with is a series of eight bytes sent in a continuous stream from the transmitter to the toy. These bytes contained the throttle, yaw, pitch, roll, and a ‘flip’ settings, along with three bytes of ‘counters’ that didn’t seem to do anything.  With that info in hand, [Michael] took an Arduino Nano, an nRF04L01+ transceiver, and a Wii nunchuck to build his own transmitter. If you’re looking for a ‘how to reverse engineer’ guide, it generally doesn’t get better than this.

You can check out a video of [Michael] flying his Wiimoted quadcopter below.

Continue reading “Reverse Engineering Quadcopter Protocols”

Power Glove Takes Over Quadcopter Controls

Gerrit and I were scoping out the Intel booth at Bay Area Maker Faire and we ran into Nolan Moore who was showing of his work to mash together a Nintendo Power Glove with an AR Drone quadcopter. Not only did it work, but the booth had a netted cage which Nolan had all to himself to show off his work. Check the video clip below for that.

The control scheme is pretty sweet, hold your hand flat (palm toward the ground) to hover, make a fist and tilt it in any direction to affect pitch and roll, point a finger up or down to affect altitude, and point straight and twist your hand for yaw control. We were talking with Nolan about these controls it sounded sketchy, but the demo proves it’s quite responsive.

The guts of the Power Glove have been completely removed (that’s a fun project log to browse through too!) and two new boards designed and fabbed to replace them. He started off in Eagle but ended up switching to KiCAD before sending the designs out for fabrication. I really enjoy the footprints he made to use the stock buttons from the wrist portion of the glove.

A Teensy LC pulls everything together, reading from an IMU on the board installed over the back of the hand, as well as from the flex sensors to measure what your fingers are up to. It parses these gestures and passes appropriate commands to an ESP8266 module. The AR Drone 2.0 is WiFi controlled, letting the ESP8266 act as the controller.

Your Quadcopter Has Three Propellers Too Many

While studying failure modes for quadcopters, and how to get them safely to the ground with less than a full quad of propellers, a group of researchers at the Institute for Dynamic Systems and Control at ETH Zurich came up with a great idea: a mode of flight that’s like the controlled spinning descent of a maple seed.

The Monospinner runs on the absolute minimum number of moving parts. Namely, one. Even a normal helicopter has a swash plate for adjustable blade pitch, and a tail rotor to keep it from spinning. Give up the idea that you want to keep it from spinning, and you can achieve controlled flight with a lot less. Well, one motor and a whole lot of math and simulation.

The Monospinner is carefully weighted so that it’s as stable as possible while spinning, but so far it’s unable to spin itself up from a standstill. In initial tests, they attached it to a pivot to help. The best part of the video (below) is when the researcher throws it, spinning, into the air and it eventually stabilizes. Very cool.

Continue reading “Your Quadcopter Has Three Propellers Too Many”

Arduino Quadcopter Game Uses Serial Monitor

Every new generation of computers repeats the techniques used by the earlier generations. [Kim Salmi] created an ASCII-based quadcopter simulation game using an Arduino that displays on the Arduino serial monitor. The modern twist is the controller: an accelerometer supplements the joystick for immersive play. And of course there are flashing LEDs.

An Arduino Uno provides the processing power and drives the serial monitor. A joystick and a Hitachi H48C accelerometer are mounted on a breadboard and wired to the Uno. The tilting of the accelerometer controls the height and left-right motion of the quadcopter on the screen. The joystick sets the the ‘copter in hover mode and lowers a ‘rescue’ line. Another LED warns when the maximum height, the vertical limit of the screen, is reached. The joystick also selects one of the three quadcopters, which have different performance characteristics.

There’s a video after the break. [Kim] provides the source code so  you use it as a reference for handling the joystick and accelerometer inputs.

More proof that what is old is new.  Continue reading “Arduino Quadcopter Game Uses Serial Monitor”