A White-Light Laser, On The Cheap

Lasers are known for the monochromatic nature of their light, so much so that you might never have thought there could be such a thing as a white laser. But in the weird world of physics, a lot of things that seem impossible aren’t really, as demonstrated by this dirt-cheap supercontinuum laser.

Of course, we’re not experts on lasers, and certainly not on non-linear optics, so we’ll rely on [Les Wright]’s video below to explain what’s going on here. Basically, a “supercontinuum” is just the conversion of a monochromatic source to a broader spectral bandwidth. It’s a non-linear optical process that’s usually accomplished with expensive bits of kit, like photonic crystal fibers, which are optical fibers with an array of tiny air-filled holes running down their lengths. Blast a high-intensity monochromatic laser down one end, and white light comes out the other end.

Such fibers are obviously fantastically expensive, so [Les] looked back in the literature and found that a simple silica glass single-mode fiber could be used to produce a supercontinuum. As luck would have it, he had been experimenting with telecom fibers recently, so along with a nitrogen laser he recovered from a Dumpster, he had pretty much everything he needed. The final setup uses the UV laser to pump a stilbene dye laser, which shoots a powerful pulse of 426 nanometer light into about 200 meters of fiber, and produces a gorgeous supercontinuum containing light from 430 nm to 670 nm — pretty much the entire visible spectrum.

It’s great to see projects like this that leverage low-cost, easy-to-source equipment to explore esoteric physics concepts.

Continue reading “A White-Light Laser, On The Cheap”

Disappearing Writing With UV Laser Reveals Whitening Agents In Myriad Products

Many a budding maker has experimented with invisible inks, with a wide variety of solutions having a viable set of properties for this purpose. However, [Ben Krasnow] stumbled upon a different method entirely when tinkering with a UV laser.

The effect is subtle, but remains visible for several minutes.

The laser in question was a MNL100 UV laser, configured to produce nanosecond-scale 20 kW pulses at up to 24 Hz, operating at wavelength of 337 nm, deep in the ultraviolet. After piping the laser light through an optical fiber and aiming it at some regular white paper, dark marks were observed, which disappear without a trace over the course of a few minutes.

Upon investigation, the dark marks seemed to be the result of fluorescent whitening agents in the paper. It appears they are overloaded or otherwise changed chemically by the laser, and slowly return back to normal over time. Further experiments showed that hydrogen peroxide was able to remove the marks instantly, and an argon atmosphere slowed the rate at which the marks faded.

It’s an interesting look at an odd chemical effect, with the benefit of a well-equipped optics lab to analyse what’s going on. Following the phenomenon down the rabbit hole leads to some tips on how to extract fluorescent additives from common laundry detergent. Be it paper, plastic, or textile, if it looks really bright white to your eye it probably contains stilbene organic compounds as optical brighteners, a hidden trait you never actually thought about before. Video after the break.

Continue reading “Disappearing Writing With UV Laser Reveals Whitening Agents In Myriad Products”

Gentle Introduction To White Light Interferometry

Screenshot of the Zygo white light interferometry microscope software. (Credit: Huygens Optics)
Screenshot of the Zygo white light interferometry microscope software. (Credit: Huygens Optics)

White light interferometry (WLI) is a contact-free optical method for measuring surface height. It uses the phase difference between the light reflected off a reference mirror and the target sample to calculate the height profile of the sample’s surface. As complex as this sounds, it doesn’t take expensive hardware to build a WLI microscope, as [Huygen Optics] explains in a detailed introductory video on the topic. At its core you need a source of white light (e.g. a white LED), with a way to focus the light so as to get a spatially coherent light source, like aluminium foil with a pin hole and a lens.

This light source then targets a beam splitter, which splits the light into one beam that targets the sample, and one that targets the reference mirror. When both beams are reflected and return to the beam splitter, part of the reflected light from either side ends up at the camera, which captures the result of the reference and sample beams after their interference (i.e. combination of the amplitudes). This creates a Michelson interferometer, which is simple, but quite low resolution. For the demonstrated Zygo Newview 100 WLI microscope this is the first objective used, followed by a more recent innovation: the Mirau interferometer, which integrates the reference mirror in such a manner that much higher resolutions are possible, down to a few µm.

Continue reading “Gentle Introduction To White Light Interferometry”

Review: WAINLUX K8, A Diode Laser That’s Ready To Work

Rarely a week goes by that some company doesn’t offer to send us their latest and greatest laser. You know the type — couple of aluminum extrusions, Class 4 diode flopping around in the breeze, and no enclosure to speak of unless you count the cardboard box they shipped it in. In other words, an accident waiting to happen. Such gracious invitations get sent to the trash without a second thought.

Now don’t get me wrong, I have no doubt that the average Hackaday reader would be able to render such a contraption (relatively) safe for use around the shop. Build a box around it, bolt on a powerful enough fan to suck the smoke out through the window, and you’ve turned a liability into a legitimate tool. But the fact remains that we simply can’t put our stamp on something that is designed with such a blatant disregard for basic safety principles.

The earlier WAINLUX JL4 — lucky rabbit foot not included.

That being the case, a recent email from WAINLUX nearly met the same fate as all those other invitations. But even at a glance it was clear that this new machine they wanted to send out, the K8, was very different from others we’d seen. Different even from what the company themselves have put out to this point. This model was fully enclosed, had a built-in ventilation fan, an optional air filter “sidecar”, and yes, it would even turn off the laser if you opened the door while it was in operation. After reading through the promotional material they sent over, I had to admit, I was intrigued.

It seemed like I wasn’t the only one either; it was only a matter of days before the Kickstarter for the WAINLUX K8 rocketed to six figures. At the time of this writing, the total raised stands at just under $230,000 USD. There’s clearly a demand for this sort of desktop laser, the simplicity of using a diode over a laser tube is already appealing, but one that you could actually use in a home with kids or pets would be a game changer for many people.

But would the reality live up to the hype? I’ve spent the last couple of weeks putting a pre-production WAINLUX K8 through its paces, so let’s take a look and see if WAINLUX has a winner on their hands.

Continue reading “Review: WAINLUX K8, A Diode Laser That’s Ready To Work”

Artemis II Laser Communications

Artemis II Will Phone Home From The Moon Using Laser Beams

[NASA] Astronauts will be testing the Orion Artemis II Optical Communications System (O2O) to transmit live, 4K ultra-high-definition video back to Earth from the Moon. The system will also support communication of images, voice, control channels, and enhanced science data.

Aboard Orion, the space terminal includes an optical module, a modem, and a control system.  The optical module features a four inch telescope on a dual gimbal mount. The modem modulates digital information onto laser beams for transmission back to Earth, and demodulates data from laser beams recieved from Earth. The control system interfaces with avionic systems aboard Orin to control and point the communications telescope.

On Earth, facilities including the Jet Propulsion Laboratory and the White Sands Complex will maintain high-bandwidth optical communication links with Orion. Information received from Orion will be relayed to mission operations, scientists, and researchers.

NASA’s Laser Communications Relay Demonstration (LCRD) showcases the benefits of optical communications.  Traditionally, missions relied upon radio communication, but improved technology will better serve space missions that generate and collect ever-increasing quantities of data. Optical communication solutions can provide 10 to 100 times the bandwidth of radio frequency systems. Other improvements may include increased link distances, higher efficiency, reduced interference, improved security, and reductions in size and weight. Our Brief History of Optical Communication outlines many of these advantages.

Continue reading “Artemis II Will Phone Home From The Moon Using Laser Beams”

DIY Fiber Laser Adds Metal Cutting To The Mix

Sadly, the usual CO2-powered suspects in the DIY laser cutter market are woefully incapable of cutting metal. Sure, they’ll cut the heck out of plywood and acrylic, and most will do a decent job at engraving metal. But cutting through a sheet of steel or aluminum requires a step up to much more powerful fiber laser cutters. True, the costs of such machines can be daunting, but not daunting enough for [Travis Mitchell], who has undertaken a DIY fiber laser cutter build that really caught our eye.

Right off the bat, a couple of things are worth noting here. First — and this should be obvious from the fountains of white-hot sparks in the video below — laser cutters are dangerous, and you should really know what you’re doing before tackling such a build. Second, just because [Travis] was able to cut costs considerably compared to a commercial fiber laser cutter doesn’t mean this build was cheap in absolute terms — he reports dropping about $15,000 so far, with considerable ongoing costs to operate the thing.

That said, there doesn’t appear to be anything about this build that anyone with some experience building CNC machines wouldn’t be able to tackle. The CNC side of this is pretty straightforward, although we note that the gantry, servos, and controller seem especially robust.

The laser itself is an off-the-shelf machine, a Raycus RFL-C1000 fiber laser and head that packs a 1,000-Watt punch. There’s also the required cooling system for the laser, and of course there’s an exhaust system to get rid of the nasty fumes.

All that stuff requires a considerable investment, but we were surprised to learn how much the consumables cost. [Travis] opted for bottled gas for the cutter’s gas assist system — low-pressure oxygen for carbon steel and high-pressure nitrogen for everything else. Refills are really pricey, in part because of the purity required, but since the proper compressor for the job is out of the budget for now, the tanks will have to do. And really, the thing cuts like a dream. Check out the cutting speed and precision in the video below.

This is but the first in a series of videos that will detail the build, and if [Travis] thought this would whet our appetites for more, he was right. We really haven’t seen many DIY fiber laser builds, but we have seen a teardown of a 200-kW fiber laser that might tickle your fancy.

Continue reading “DIY Fiber Laser Adds Metal Cutting To The Mix”

Hackaday Podcast 196: Flexing Hard PCBs, Dangers Of White Filament, And The Jetsons’ Kitchen Computer

This week, Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi start the Hackaday Podcast by talking about another podcast that’s talking about…Hackaday. Or more accurately, the recent Hackaday Supercon. After confirming the public’s adoration, conversation moves on to designing flexible PCBs with code, adding a rotary dial to your mechanical keyboard, and a simulator that lets you visualize an extinction-level event. We’ll wrap things up by playing the world’s smallest violin for mildly inconvenienced closed source software developers, and wonder how the world might have been different if the lady of the house had learned to read binary back in 1969.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download the podcast and play it on your Palm Pilot!

Continue reading “Hackaday Podcast 196: Flexing Hard PCBs, Dangers Of White Filament, And The Jetsons’ Kitchen Computer”