Hackaday Links: June 11, 2017

PCB art is getting better and better every year. This year, though, is knocking it out of the park. In March, [Andrew Sowa] turned me into money. More recently, [Trammell Hudson] has explored the layers of OSH Park soldermask and silk to create a masterpiece. Now, we’re moving up to full-blown art. [Blake Ramsdell] worked with OSH Park to create a full panel of art in gold, fiberglass, soldermask, and silkscreen. It’s 22×16 inches, and it’s fantastic.

There’s an independent Hackaday meetup going down in Hong Kong this week. The subject of the meetup will be vacuum systems for electron beam melting, mass spectrometry, and building Nixie tubes.

Why does my circuit still work when I remove some caps? This question was posed to the EEVBlog forums, with a picture attached of  the worst mess of wires I’ve ever seen. This is — supposedly — not a joke, and a complete, functional CPU built out of 74HC series logic on thirty or so solderless breadboards. A weird bonus of access to the tip line at Hackaday means everyone here becomes experts in the field of absurdly constructed electronics. Want to see the worst PCB ever? We’ve seen it. This is, without question, the most rats nest electronic project anyone has ever built.

[Adam West] died this weekend at the age of 88. [West] is perhaps best known for his performance in Lookwell as a crime-solving, washed-up TV action hero. He is survived by his wife, Marcelle, and six children.

There’s a new documentary on [Nolan Bushnell] and the early days of Atari. Documentarian [Bruno Grampa] will be showing his latest, Easy to Learn, Hard to Master at the Computer History Museum in Mountain View on June 23rd. It’s narrated by [Bil Herd], so we’re a bit prejudiced, but check out the trailer.

Hackaday Prize Entry: Earthquake Warnings via Tweets

Seismic waves travel through the Earth’s crust at about four kilometers a second. Light travels through fiber at about 200,000 kilometers per second. Taking network lag into account, it’s possible to read a Tweet about an earthquake a few seconds before the shaking starts. This is the concept behind an XKCD strip and a project for the Hackaday Prize.

[Zalmotek]’s Earthquake Validation Gadget is an Internet-connected box designed for those few seconds between asking yourself, ‘is this an earthquake’ and saying, ‘yeah, this is totally an earthquake’. Inside this wall-mounted box is both a sensitive vibration sensor and a microcontroller connected to the Internet. If the vibration sensor goes off, it checks the Internet — the USGS website is a great start, by the way — for any large, local earthquakes. If there’s a possibility that shaking is an earthquake, lights and sirens go off, telling you to take cover.

The idea of an ‘earthquake warning device’ isn’t new. The USGS has a system in place for just this sort of thing. It’s good to see independent researchers working on this, though, and it makes for a great entry to the Hackaday Prize.

Casting Cylinder Heads Out Of JB Weld

Like friendship, JB Weld is magic. Rumors persist of shade tree mechanics in the Yukon repairing cracked engine blocks with JB Weld, and last month this theory was proved correct. [Project Farm] over on YouTube took a grinder to the head of a lawnmower engine, filled the gouge with JB Weld, and ran the engine for twenty minutes.

However, as with anything mechanical that doesn’t have a foul-mouthed Canadian in it, arguments ensued. ‘This was not a true test of JB Weld repairing a cracked engine block’, claimed Internet commenters, ‘I won’t even watch the video because the idea alone is click bait.’

Now, [Project Farm] is back at it. Is it possible to use JB Weld to cast an entire cylinder head for a lawnmower? It sure is. With a cast epoxy cylinder head, this engine will run for just long enough for a proof of concept.

This experiment began by casting a single monolithic block of JB Weld that’s a bit larger than the cylinder head for a lawnmower. After curing, this JB Brick was surfaced on both sides with a belt sander. No, there was no vacuum chamber or any other techniques used by people who work with epoxies for a living. With the brick surfaced, the head gasket was used to place the bolt holes, the brick was tapped for a spark plug, and a bit of the inside was Dremeled out for the valves.

After attaching the JB Weld cylinder head to a lawnmower, [Project Farm] ran the lawnmower for about a minute. Is this a proof of concept? Yes. Did it work? Absolutely. Is it the ultimate test of JB Weld and the myth of the cracked engine block? Unfortunately, no. For that, someone will have to build a real engine entirely out of JB Weld. Until then, just check out the video below.

Continue reading “Casting Cylinder Heads Out Of JB Weld”

Hackaday Prize Entry: Printing Bones

You would be forgiven to think that 3D printing is only about rolls of filament and tubs of resin. The fact is, there are many more 3D printing technologies out there. Everything from powders to paper can be used to manufacture a 3D model. [Jure]’s Hackaday Prize entry is meant to explore those weirder 3D manufacturing techniques. This is a printer that lays down binder over a reservoir of powder, slowly building up objects made out of minerals.

The key question with a powder printer is exactly what material this printer will use. For this project, [Jure] is planning on printing with hydroxyapatite, a mineral that makes up about 70% of bones by weight. Printing bones — yes, they do that — is quite expensive and has diverse applications.

The design of this printer is about what you would expect. It’s a Cartesian design with a roller to distribute powder, a piston to drop the part down into the frame, and an industrial inkjet printhead designed for wide format printers. It’s a fantastic piece of work and one of the better powder printers we’ve seen, and we can’t wait to see what [Jure] is able to produce with this.

Friday Hack Chat: 8-Bit Micros With Microchip

A few years ago, Microchip acquired Atmel for $3.56 Billion. There are plenty of manufacturers of 8-bit microcontrollers, but everyone makes 8051s, and the MSP430 isn’t as popular as it should be. Microchip’s acquisition of Atmel created what is probably the largest manufacturer of 8-bit micros, with a portfolio ranging from ATtinys smaller than a grain of rice to gigantic PICs.

This Friday, we’re hosting a Hack Chat with the Technical Marketing Engineer of 8-bitters at Microchip. If you love AVR, this is the guy to talk to. If you’re still rocking the vintage 1993 PICkit, this is the guy to talk to.

On the docket for this Hack Chat are some new PICs and some very interesting peripherals coming down the line. ADCC — A2D with computation — is on the table, along with configurable logic cells. This Hack Chat is also going to go over Microchip design tools like MP Lab Xpress.

Of course, these Hack Chats are a question and answer session for the community. We’re encouraging everyone to ask a few questions about what Microchip is doing. We’ve opened up a discussion guide for this Hack Chat. If you have a question, just add it to the list.

If you can’t make the Hack Chat, don’t worry. We’re going to have a transcript of the entire chat. That should be available here shortly after the chat concludes.

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This hack chat will take place at noon Pacific time on Friday, June 9th. Here’s a fancy time and date converter if you need timezone help.

Log into Hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about

Hackaday Prize Entry: The FPGA Commodore

The history of Commodore 8-bit computers ends with a fantastically powerful, revolutionary, and extraordinarily collectible device. The Commodore 65 was the chicken lip’ last-ditch effort to squeeze every last bit out of the legacy of the Commodore 64. Basically, it was a rework of a 10-year-old design, adding advanced features from the Amiga, but still retaining backwards compatibility. Only 200 prototypes were produced, and when these things hit the auction block, they can fetch as much as an original Apple I.

For their Hackaday Prize entry, resident hackaday.io FPGA wizard [Antti Lukats] and a team of retrocomputing enthusiasts are remaking the Commodore 65. Finally, the ultimate Commodore 8-bit will be available to all. Not only is this going to be a perfect replica of what is arguably the most desirable 8-bit computer of all time, it’s going to have new features like HDMI, Ethernet, and connections for a lot of FPGA I/O pins.

The PCB for this project is designed to fit inside the original case and includes an Artix A200T FPGA right in the middle of the board. HDMI and VGA connectors fill the edges of the board, there’s a connector for a floppy disk, and the serial port, cartridge slot, and DE9 joystick connectors are still present.

You can check out an interview from the Mega65 team below. It’s in German, but Google auto-generated and auto-translated captions actually work really, really well.

Continue reading “Hackaday Prize Entry: The FPGA Commodore”

You Won’t Believe That Fidget Spinners Are Obvious Clickbait!

I don’t know why fidget spinners are only getting popular now. They’ve been selling like hotcakes on Tindie for a year now, and I’ve been seeing 3D printed versions around the Internet for almost as long. Nevertheless, fidget spinners — otherwise known as a device to turn a skateboard bearing into a toy — have become unbelievably popular in the last month or so. Whatever; I’m sure someone thinks my complete collection of Apollo 13 Pogs from Carl’s Jr. with modular Saturn V Pog carry case and aluminum slammer embossed with the real Apollo 13 mission patch is stupid as well.

However, a new fad is a great reason to drag out an oscilloscope, measure the rotation of a fidget spinner, take a video of the whole endeavor, and monetize it on YouTube. That’s just what [Frank Buss] did. It’s like he’s printing money at this point.

The measurement setup for this test is simple enough. [Frank] connected a small solar cell to the leads of his $2k oscilloscope, and placed the cell down on his workbench. This generated a voltage of about 28mV. Spinning the fidget spinner cast a shadow over the cell that was measured as a change in voltage. Oscilloscopes measure frequency, and by dividing that frequency by three, [Frank] calculated his fidget spinner was spinning at the remarkable rate of 2200 RPM.

Is this a stupid use of expensive equipment? Surprisingly no. The forty thousand videos on YouTube demonstrating a “99999+ RPM Fidget Spinner” all use cheap digital laser tachometers available for $20 on eBay. These tachometers top out at — you guessed it — 99999 RPM. Using only an oscilloscope and a solar cell [Frank] found in his parts drawer, he found an even better way to push the envelope of fidget spinner test and measurement.

Using this method, even an inexpensive 40MHz scope can reliably measure three-bladed fidget spinners up to 800,000,000 RPM. Of course, this calculation doesn’t take into account capacitance in the cell, you’ll need a margin for Nyquist, and everything within 20 meters will be destroyed, but there you go. A better way to measure the rotation speed of fidget spinners. It’s technically a hack.

You can check out [Frank]’s video of this experiment below. If you liked this post, don’t forget to like, rate, comment and subscribe for even more of the best Fidget Spinner news.

Continue reading “You Won’t Believe That Fidget Spinners Are Obvious Clickbait!”