MIDI-Gurdy, MIDI-Gurdy, MIDI-Gurdy Man

The hurdy gurdy is the perfect musical instrument. It’s an instrument with a crank, and a mechanical wonderment of drone strings and weird chromatic keyboards. No other musical instrument combines the sweet drone of bagpipes with the aural experience of an eight-year-old attempting to play Hot Cross Buns on a poorly tuned violin.

Now, the hurdy gurdy is going digital. The Digi-Gurdy is [XenonJohn]’s entry into this year’s Hackaday Prize, and it’s exactly what it says on the tin: it’s a musical instrument that drones on and on, with keys plunking out a melody.

If you’re not familiar with a hurdy gurdy, this video is a varily good introduction. It’s a box with somewhere between four and six strings mounted on the outside. The strings vibrate by means of a wooden wheel powered by a crank. There’s a keyboard of sorts along the body of the instrument that ‘fret’ a single string providing the melody; all the other strings are drone strings that sound continuously. I think it was in, like, a Led Zeppelin video, man.

While it’s a slightly complicated build to make an analog hurdy gurdy, delving into the digital domain is easy: [XenonJohn] is building a hurdy gurdy that simply outputs MIDI commands with some buttons and a Teensy 3.6 microcontroller. The parts are 3D printed, and since this hurdy gurdy is completely digital, you can change the tuning of the drone strings without actually tuning them. Awesome.

This MDF Sound Bar Sounds Great

Everyone should build a speaker cabinet at least once in their life, if only so they can realize how much thought goes into building a simple box. [John] of ibuildit.ca wanted a sound bar for his home theater setup, and that means building a sound bar. The result is beautiful, and a demonstration of how much you can do with just a router and a table saw.

[John] built this sound bar almost entirely out of MDF, which isn’t the best material but it works well enough for a speaker cab that’s meant to be mounted to a wall. The sides were constructed first, with a rabbet holding the front and back on. Both the woofer and tweeter are inset into the front, and a standard piece of plumbing pipe serves as the bass port. Slap a round over bit into the router and do some light sanding, and everything looks great with a coat of black paint.

As with any speaker enclosure, the design is effectively parametric, designed entirely around the drivers being used. In this case, [John] is using a spreadsheet named ‘Unibox’ that gives you all the formulas and graphs for designing a speaker enclosure.

With the box built and the speakers installed, the only matter left were a few aesthetic choices. [John] went with a standard black finish with a very nice wooden grille held onto the front with magnets. It’s a design that pops, but the true test of a speaker is how it sounds. That’s a bit hard to convey over the Internet, but [John] included a few sound samples at the end of the build video, available below.

Continue reading “This MDF Sound Bar Sounds Great”

PiTop, Makers Of Raspberry Pi Laptops, Release Something That’s Not A Laptop

The Raspberry Pi the closest thing to a modular laptop. That’s the idea behind the Pi-Top, a laptop with a Raspberry Pi as a brain. Need an upgrade? No problem, just get the latest Pi, they’re up to four now.

Now the people behind the Pi-Top are releasing what can best be described as a brick of computing. The Pi-Top 4 is a designed as ‘The Sony Walkman for Making’, in which the form factor becomes a building block of anything you can imagine and probably a lot of things you can’t. Inside is a Raspberry Pi 4, a small OLED display, and a few buttons. On the bottom is a detachable ‘foundation plate’ that allows the Pi-Top 4 to connect to sensors, LEDs, and switches. The idea of all this building is that the brick-shaped Pi-Top 4 becomes a building block in anything you can imagine, be that a drone, a humanoid robot, or a portable photo booth. All of this is powered by the Raspberry Pi 4, no slouch when it comes to computational power.

The Pi-Top 4 doesn’t have a release date or a price just yet, but the company says it will be offered on Kickstarter.

Continue reading “PiTop, Makers Of Raspberry Pi Laptops, Release Something That’s Not A Laptop”

Emulating A 6502 In ROM

The Gigatron TTL microcomputer is an exercise in alternative history. What if, by some bizarre anomaly of invention and technology, the 1970s was not the age of the microprocessor? What if we could have had fast, high density ROM and RAM in the late ’70s, but the ability to put a microprocessor in silicon was beyond our comprehension? Obviously we would figure out a way to compute with this, and the Gigatron is the answer. It’s a computer from that era that’s designed with a CPU that’s entirely made of microcode.

While the Gigatron is a popular product in the world of weird electronics kits, the creator, [Marcel van Kervinck], is going beyond what anyone thought possible. Now the Gigatron is emulating a 6502 processor, the same CPU found in the Apple II and almost every other retrocomputer that isn’t running a Z80.

There’s a thread over on the Gigatron forums for this. Although it’s still very early in development, the Gigatron can now run 6502 machine code,  and in doing so the Gigatron is now the only dual-core computer without a CPU. All of the addressing modes have been implemented, along with half of the instructions and most of the status flags. All of this interacts with the Gigatron’s existing video subsystem, and all code can switch in between the Gigatron’s virtual CPU and 6502 code with just a few instructions.

This opens the door to a wide variety of software that’s already written. MicroChess is possible, as is MS Basic. This is great; the biggest downside of the Gigatron is that there was no existing code for the machine when it was first designed. That changed when the Gigatron got a C compiler, but now somehow we’ve got a logic chip implementation of a 6502 in far fewer chips than are found in an Apple II. It’s not fast ( about 1/8th the speed of a 1 MHz 6502), but in the video below you can see a munching squares demo.

Continue reading “Emulating A 6502 In ROM”

The Arduboy Gets A Crank Mod

You’ve seen VR headsets and wearable video game controllers and flight yokes and every other type and kind of video game controller, but a crank? Yes, the Arduboy now has a crank modification in tribute to (or blatant ripoff of) the PlayDate, a video game console created by Panic and Teenage Engineering.

The basis for this build is the Arduboy, a miniature game system the size of a credit card. This game console features candy-like buttons, compatibility with the Arduino IDE, and a community that has produced dozens of games already. Where there’s software developers there’s inevitably a few hardware engineers waiting in the wings, and this is no exception. [bateske] created a crank mod for the Arduboy that gives this miniature, toy-like game console a crank. Ready to write a bass fishing simulator? This is your shot.

The hardware for this build consists of a 360° rotary encoder for the internals of the device. For the handle, [bateske] found an interesting ‘premium grinder for herbs and spices’ on Amazon. Shockingly, this crank handle just sort of works with the rotary encoder.

As for games, this is a brand new user interface for the Arduboy game console, so of course there are some interesting possibilities. There’s a fishing simulator that’s more interesting than real fishing and something like Flappy Bird only instead of flapping it’s bouncing over bottomless pits. You can check out this crank console out below.

Continue reading “The Arduboy Gets A Crank Mod”

Hackaday Links Column Banner

Hackaday Links: June 30, 2019

In our continuing series of, ‘point and laugh at this guy’, I present a Kickstarter for the, “World’s First Patented Unhackable Computer Ever”.  It’s also a real web site and there’s even a patent (US 10,061,923, not showing up on Google Patents for some reason), and a real product: you can get an unhackable laptop, and you can get it in either space gray or gold finish. This gets fun when you actually dig into the patent; it appears this guy invented protected memory, with one section of memory dedicated to the OS, and another dedicated to the browser. This is a valid, live patent, by the way.

The 2019 New York Maker Faire is off. Yeah, it says it’s still going to happen on the website, but trust me, it’s off, and you can call the New York Hall of Science to confirm that for yourself. Maker Media died recently, and there will be no more ‘Flagship’ Maker Faires. That doesn’t mean the ‘mini’ and ‘featured’ Maker Faires are dead, though: the ‘Maker Faire’ trademark is simply licensed out to those organizers. In the next few weeks, there is going to be a (mini) Maker Faire in Coeur d’Alene, Idaho, Gilroy, California, Edmonton, Alberta, Kingsport Tennessee, and a big ‘ol one in Detroit. This raises an interesting question: where is the money for the licensing going? I’m sure some Mini Maker Faire organizers are reading this; have your checks been cashed? What is the communication with Maker Media like?

Just because you can, doesn’t mean you should. It’s valuable words of wisdom like that and can apply to many things. Commenting on blog posts, for example. Yes, you can throw sticks at a wasp’s nest, that doesn’t mean you should. Yes, you can 3D print Heely adapters for your shoes, but it doesn’t mean you should. It does look dope, though and you’re automatically a thousand times cooler than everyone else.

The C64 Mini is a pocket-sized Linux device with an HDMI port meant to play C64 games.   There were high hopes when the C64 Mini was announced, but it turned out the keyboard isn’t actually a mini keyboard. Now someone had the good sense to combine one of these ‘smartphone chips running an emulator in a retro case’ products with a full-sized keyboard. The C64 will be around by Christmas, and yeah, it has a full working keyboard.

Extracting Power From USB Type C

For the last decade or so, we’ve been powering and charging our portable devices with USB. It’s a system that works; you charge batteries with DC, and you don’t want to have a wall wart for every device, so just grab a USB hub and charge your phone and you headphones or what have you. Now, though, we have USB Type C, with Power Delivery. Theoretically, we can pull 100 W over a USB cable. What if we could tap into that with screw terminals?

That’s the idea behind [Jakob]’s entry to the Hackaday Prize. It’s a USB 3.1 Type C to Type A adapter, but it also has the neat little bonus of adding screw terminals. Think of it as jumper cables for your laptop or phone, but don’t actually do that.

[Jakob]’s board consists of a USB Type C receptacle on one end, and a Type A plug on the other, while in between those two sockets is an STM32G0 microcontroller that handles the power negotiation and PD protocol. This gives the USB Type C port dual role port (DRP) capability, so the power connection can go both ways. Add in a screw terminal, and you can theoretically get 20 V at 5 A through a pair of wires. Have fun with that.

Right now, [Jakob] has all the files in a Gitlab with the schematic and layout available here. It’s an interesting project that has tons of applications of USB hackery, and more than enough power to do some really fun stuff.