The Most Powerful DIY Railgun

The US Navy is working on a few railgun projects that will eventually replace the largest guns on the fleet’s cruisers and destroyers. These rail guns will fire a projectile away from the ship at around Mach 7 on a ballistic trajectory to a target one hundred miles away. It’s an even more impressive piece of artillery than a gun with a nuclear warhead, and someday, it will be real.

most-powerful-non-military-railgunUntil then, we’ll have to settle with [Zebralemur]’s DIY mobile railgun. He built this railgun capable of firing aluminum projectiles through pumpkins, cellphones, and into car doors and blocks of ballistics gelatin.

All rail guns need a place to store energy, and in all cases this is a gigantic bank of capacitors. For this project, [Zebralemur] is using fifty-six, 400 Volt, 6000 microfarad caps. The MSRP for these caps would be about $50,000 total, but somehow – probably a surplus store – [Zebralemur] picked them up for $2,400.

These caps are just the power supply for the rail gun, and aren’t part of the structure of this already large, 250 pound gun. Luckily, with the seats down in [Zebralemur]’s car, they fit in the back of his hatchback.

These caps are charged by a bunch of 9V batteries stuck end to end. When the caps are charged, all the power is dumped into two copper bars in the gun, accelerating the aluminum projectile to speeds fast enough to kill. It’s an incredible build, but something that should not be attempted by anyone. Although this does seem to be the year that all danger seekers are busting out their electromagnetic projection flingers.

Continue reading “The Most Powerful DIY Railgun”

A Square Inch of Nyan

Over on, there’s an unofficial contest to cram as much electronics and awesome as possible into a single square inch of PCB. While the measurement system is logical, the Internet is not: it feeds on cats and is entertained by rainbows. [Radomir]’s project feeds into this bizarre fixation with the Nyan Board, a Pop Tart cat that poops rainbows, all the while playing bleeps and boops that would fit well in a Nintendo game.

[Radomir] built this square inch of twee for the square inch project, an unofficial contest to fit the coolest project on a 1×1 inch square PCB. Prizes are credits for the Hackaday Store and OSHPark. This entry uses an ATtiny85 microcontroller, a few resistors, LEDs,  and a buzzer to play the strange, syncopated Nyan theme song. Power is delivered over a colorful ribbon cable that emulates the rainbow tail of the Pop Tart cat.

This isn’t the only project in the Square Inch Project, or even the most blinky; there’s also a RRROYYYYgYgGGBgBPW LED, a square inch quadcopter, and a device that detects the world’s smallest bat. All very interesting projects, and we can’t wait to see all the entries finished.

Continue reading “A Square Inch of Nyan”

Turning A Teensy Into A U2F Key

Last month, GitHub users were able to buy a special edition Universal 2nd Factor (U2F) security key for just five bucks. [Yohanes] bought two, but wondered if he could bring U2F to other microcontrolled devices. he ended up building a U2F key with a Teensy LC, and in the process brought U2F to the unwashed masses.

Universal 2nd Factor is exactly what it says on the tin: it doesn’t replace your password, but it does provide a little bit of extra verification to prove that the person logging into an account is indeed the person that should. Currently, Google (through Gmail and Google Drive), Github, Dropbox, and even WordPress (through a plugin) support U2F devices, so a tiny USB key that’s able to provide U2F is a very useful device.

After digging into the U2F specification [Yohanes] found the Teensy LC would be a perfect platform for experimentation. A U2F device is just a USB HID device, which the Teensy handles in spades. A handy library takes on ECC for both AVR and ARM platforms and [Yohanes’] finished U2F implementation is able to turn the Teensy LC into something GitHub was selling for $5.

It should be noted that doing anything related to security by yourself, with your own code is dumb and should not be considered secure. Additionally, [Yohanes] didn’t want to solder a button to his Teensy LC, so he implemented everything without a button press, which is also insecure. The ‘key handle’ is just XOR encryption with a fixed key, which is also insecure. Despite this, it’s still an interesting project and we’re happy [Yohanes] shared it with us.

3D Printed Eyeglasses, VR Lenses

[Florian] is hyped for Google Cardboard, Oculus Rifts, and other head mounted displays, and with that comes an interest in lenses. [Floian] wanted to know if it was possible to create these lenses with a 3D printer. Why would anyone want to do this when these lenses can be had from dozens of online retailers for a few dollars? The phrase, ‘because I can’ comes to mind.

The starting point for the lens was a CAD model, a 3D printer, and silicone mold material. Clear casting resin fills the mold, cures, and turns into a translucent lens-shaped blob. This is the process of creating all lenses, and by finely sanding, polishing, and buffing this lens with grits ranging from 200 to 7000, this bit of resin slowly takes on an optically clear shine.

Do these lenses work? Yes, and [Florian] managed to build a head mounted display that can hold an iPhone up to his face for viewing 3D images and movies. The next goal is printing prescription glasses, and [Florian] seems very close to achieving that dream.

The last time we saw home lens making was more than a year ago. Is anyone else dabbling in this dark art? Let us know in the comments below and send in a tip if you have a favorite lens hack in mind.

Hackaday Links: November 8, 2015

[Burt Rutan] is someone who needs no introduction. Apparently, he likes the look of the Icon A5 and is working on his own version.

Earlier this week, the US Air Force lost a few satellites a minute after launch from Barking Sands in Hawaii. This was the first launch of the three stage, solid fueled SPARK rocket, although earlier versions were used to launch nuclear warheads into space. There are some great Army videos for these nuclear explosions in space, by the way.

[Alexandre] is working on an Arduino compatible board that has an integrated GSM module and WiFi chip. It’s called the Red Dragon, and that means he needs some really good board art. The finished product looks good in Eagle, and something we can’t wait to see back from the board house.

The Chippocolypse! Or however you spell it! TI is declaring a lot of chips EOL, and although this includes a lot of op-amps and other analog ephemera (PDF), the hi-fi community is reeling and a lot of people are stocking up on their favorite amplifiers.

[Jeremy] got tired of plugging jumper wires into a breadboard when programming his ATMega8 (including the ‘168 and ‘328) microcontrollers. The solution? A breadboard backpack that fits right over the IC. All the files are available, and the PCB can be found on Upverter.

In case you haven’t heard, we’re having a Super Conference in San Francisco later this week. Adafruit was kind enough to plug our plug for the con on Ask an Engineer last week.

Casting Turbines For A World Speed Record Motorcycle

[Anders] is going to beat the land speed record for a turbine-powered motorcycle. It’s a project he’s been working on for years now, and just this week, he put the finishing touches on the latest part of the build. He successfully cast the compressor for a gas turbine engine that’s twice as powerful as the one he has now.

This compressor piece was first 3D printed, and this print was used as a positive for a sand – or more specifically petrobond – mold. The material used in the casting is aluminum, fluxed and degassed, and with a relatively simple process, [Anders] came away with a very nice looking cast that only needs a little bit of milling, lathing, and welding to complete the part.

In the interests of accuracy, and just to make sure there’s no confusion, this ‘jet’ engine is actually a gas turbine, of which there are many configurations and uses. The proper nomenclature for this engine is a ‘turboshaft’ because the power is directed to a shaft which drives something else. This is not a new build; we’ve been covering [Anders]’ build for the better part of two years now, and although [Anders] intends to break the world record at the Bonneville salt flats eventually, he won’t be beating the ultimate land speed record – that title goes to a car – and he won’t be beating the speed record for all motorcycles. Instead, [Anders] plans to break the record for experimental propulsion motorcycles, or motorcycles powered by electric motors, steam, jet engines, or in this case, ‘turboshafts’.

It should also be noted that [Anders] frequently does not wear hearing or eye protection when testing his gas turbine engine. That is an exceedingly bad idea, and something that should not be attempted by anyone.

As an additional note for safety, in the video below of [Anders] pouring aluminum into his mold, the ground looks wet. This is terrifically dangerous, and steam explosions can kill and maim even innocent bystanders. This is not something that should be attempted by anyone, but we do thank [Anders] for sharing his project with us.

Continue reading “Casting Turbines For A World Speed Record Motorcycle”

Measuring Tire Pressure By Cutting A Hole In An Inner Tube

RFID tags are really very primitive pieces of technology. Yes, they harvest energy from an RFID reader and are able to communicate a few bits of data, but for a long time these tags have been unable to provide useful data beyond a simple ID number. [CaptMcAllister] found a new RFID sensor platform from TI and managed to make a wireless pressure sensor that fits in the inner tube of his bike.

The sensor [Capt] is using comes from TI’s RF430 series that include a few neat sensors that don’t require batteries, but are still able to communicate sensor data to a cell phone or other RFID reader. With a pressure sensor, this tiny microcontroller can receive power from an RFID reader and send it back to a phone app, all without wires.

[CaptMcAllister] cut open an inner tube for his bike, epoxied his PCB to a patch, and sealed everything back up again. After a quick test for leaks, [Capt] found the data coming from the sensor was extraordinarily accurate, and should hold up well enough to be used in his bike.