Case Modding The Old School Way

Since the release of the Raspberry Pi, the hallowed tradition of taking game consoles, ripping all the plastic off, and stuffing the components into nice, handheld form factors has fallen off the wayside. That doesn’t mean people have stopped doing it, as [Akira]’s masterful handiwork shows us.

This casemod began with a Nintendo GameCube ASCII keyboard controller, a slightly rare GameCube controller that features a full keyboard smack dab in the middle. While this keyboard controller was great for Phantasy Star Online and throwing at the TV after losing Smash, the uniqueness of this controller has outshadowed its usefulness. [Akira] began his build by ripping out the keyboard and installing a 7 inch LCD. It fits well, and makes for a very unique GameCube case mod.

The rest of the build is about what you would expect – the motherboard for a PAL GameCube is stuffed inside, a quartet of 18650 batteries provide the power, and the usual mods – a memory card is soldered to the motherboard and an SD Gecko allows homebrew games and emulators to be played.

The completed project is painted with the same theme as [Samus Arans]’ Varia suit, making this a one of a kind casemod that actually looks really, really good.

Tearing Apart The Nintendo PlayStation

The mid 90s were a weird time for video game hardware. There were devices that could play videos from compact disks. Those never caught on. Virtual reality was the next big thing. That never caught on. The Sony PlayStation was originally an add-on for the Super Nintendo. That never caught on, but a few prototype units were produced. One of these prototype ‘Nintendo Playstations’ was shipped to a company that went into bankruptcy. Eventually, the assets of this company were put up for auction, and this unbelievably rare game console was bought by [Terry Diebold] for $75.

[Terry] allowed [Ben Heck] tear into this piece of videogame history, and he has the video proof that this was a collaboration between Sony and Nintendo.

Continue reading “Tearing Apart The Nintendo PlayStation”

Hackaday Prize Entry: Linear Stepper Motors

Today, your average desktop 3D printer is a mess of belts, leadscrews, and pulleys. For his Hackaday Prize entry, [DeepSOIC] is eliminating them entirely. How’s he doing this? With a linear stepper motor.

Search Google for ‘linear stepper motor’ and you’ll find a bunch of NEMA-bodied motors with leadscrews down the middle. This is not a linear stepper motor. This is a stepper motor with a leadscrew down the middle. The motor [DeepSOIC] has in mind is more like a mashup of a rack gear and a maglev train. The ‘linear’ part of this motor is a track of magnets perpendicular to the axis of the motor, with alternating polarities. The ‘motor’ part of this motor is a carriage with two field windings. It’s an unrolled stepper motor, basically, and could run a 3D printer much faster without as much slop and backlash.

Right now [DeepSOIC] is in the experimental phase, and he had a plan to print the axis of his linear stepper in ferromagnetic filament. This did not work well. The steel found in electric motors has a magnetic permeability of about 4000, while the magnetic permeability of his brand of ferromagnetic filament is about 2. Even if the idea of printing part of a motor was a complete failure, it was a great success at characterizing the properties of a magnetic 3D printing filament. That makes it a great entry for the Hackaday Prize, and a perfect example of what we’re looking for in the Citizen Science portion of the Prize.

Retrotechtacular: The US Air Force Has The Biggest Fleet

When it comes to the superlatives of aviation, there are aircraft larger than the C-5 Galaxy. [Howard Hughes]’s Spruce Goose has the largest wingspan, and the Soviet and now Ukranian Antonov AN-225 Mriya has the largest cargo capacity. When it flies in the next year or so, Scaled Composites Stratolaunch – a twin-hulled beast of a plane designed to haul rockets up to 30,000 feet – will be the aircraft with the largest wingspan and the greatest cargo capacity.

These superlatives, while completely accurate, fail to realize these huge planes are one of a kind. There is no plan to build a second Stratolaunch, and the second airframe for the AN-225 is rusting away in a field. If you want to find a fleet of enormous aircraft, there’s only one contender: the C5 Galaxy, the largest plane in the US Air Force inventory.

This video, from the USAF Archives circa 1968, goes over the design, construction, and operation of the C5 Galaxy. It covers the program beginnings, the shortcomings of earlier aircraft, and – of course – completely disregards the initial problems of the C5.

Continue reading “Retrotechtacular: The US Air Force Has The Biggest Fleet”

Hackaday Prize Entry: A Simple CNC

3D printers are all the rage, but there’s still space for more traditional CNC machines. For their Hackaday Prize entry, [Andy], [Tim], and [Chris] are building the Sienci Mill – a simple desktop CNC mill that’s able to cut drill and carve everything from wood to circuit boards.

As far as desktop CNC machines go, it doesn’t get much more simple than this. They’re using steel plates for the rails, NEMA 17s for the motors, and a simple stepper motor driver Arduino shield for the controller. The more complex parts are 3D printed, and the BOM doesn’t add up to much.

Right now, the guys are testing their mill on wood, plastic, and aluminum. With 3D printed parts, they’re also able to test a bunch of different spindles from the ubiquitous router to the smaller Dremel. It’s a great project and should be fantastically cheap when the guys finalize the plans, making this a great entry for the Hackaday Prize.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: The World’s First Tampon Monitor

[Amanda], [Jacob], [Katherine], and [vyshaalij] had a class project for their ‘Critical Making’ class at UC Berkeley. The task was to design a ‘Neo-Wearable’ that would fulfill an unmet need. Realizing women make up about 50% of the population and experience monthly periods for about half of their lives, they decided to make what can only be described as a tampon monitor. It’s a small device that monitors the… uh… ‘fullness’ of a tampon. Yes, it’s wearable technology that is actually useful, and a great entry for the Hackaday Prize.

The my.Flow, as the team are calling it, uses mechanical means to measure the saturation level of a tampon. Why would anyone want to do this? Because of leakage, anxiety, and risk of Toxic Shock Syndrome (TSS).

A ‘smart’ tampon needs some electronics, and the team’s solution to this is rather ingenious. They’re using a small, flat, wearable clip that attaches to the user’s undergarments and is connected to the tampon by an elongated tail.

Already the team is seeing a lot of success – the market research for this product showed a whopping 82% of women are ready to buy a product that would help prevent TSS. This fledgling startup was picked up by the HAX accelerator and moved to China to bring this product to life. It’s a great idea, and also a great entry for the Hackaday Prize.

The HackadayPrize2016 is Sponsored by:

Another Small Linux Computer With Pi In Its Name

Since the introduction of the Raspberry Pi, the embedded Linux scene has been rocked by well supported hardware that is produced in quantity, a company that won’t go out of business in six months, and a huge user base. Yes, there are a few small problems with the Raspberry Pi and its foundation – some stuff is still closed source, the Foundation itself plays things close to their chests, and there are some weird binary blobs somebody will eventually reverse engineer. Viewed against the competition, though, nothing else compares.

Here’s the NanoPi Neo, the latest quad-core Allwinner board from a company in China you’ve never heard of.

The NanoPi Neo is someone’s answer to the Raspberry Pi Zero, the very small and very cheap single board Linux computer whose out-of-stock percentage has led some to claim it’s completely fake and a media conspiracy. The NanoPi Zero features an Allwinner H3 quad-core Cortex-A7 running at 1.2 GHz, 256MB RAM, with a 512MB version being released shortly. Unlike the Raspberry Pi Zero, the NanoPi Neo features a 10/100 Ethernet port. No, it does not have PoE.

As with anything comparing itself to the Raspberry Pi Zero, only two things are important: size and price. The NanoPi Neo is a mere 40mm square, compared to the 65x30mm measurements of the Pi Zero. The NanoPi Neo is available for $7.99, with $5 shipping to the US. Yes, for just three dollars more than a Pi Zero with shipping, you get a poorly supported Linux board. What a time to be alive.

If you’re looking for another wonderful tale of what happens with cheap, powerful ARM chips and contract manufacturers in China, check out my review of the Pine64.