Fail of the Week: Electrically Effective Emulators Exceed Enclosure, Enrage Engineer

After a few years of on and off development, [Steve] from Big Mess ‘o Wires completed work on a floppy disk drive emulator for older Macs such as the Plus. The emu plugs into the DB-19 port on the Mac and acts just like a 3.5″ floppy, using an SD card to store the images. He’s been selling the floppy emus for about the last year, and assembled the first several scores of them himself. At some point, he enlisted a board house to make them, and as of November 2014, he’s had enclosures available in both clear acrylic and brown hardboard.

[Steve] recently ran out of emu stock, so it was time to call up the board house and get some more assembled. After waiting six weeks, they finally showed up. But in spite of [Steve]’s clear and correct instructions, all 100 boards are messed up. One resistor is missing altogether, and they transposed a part between the extension cable adapter board, connecting it directly to the emu main board. But get this: the boards still work electrically. They don’t fit in the housings, however, and the extension cables are useless. After explaining the situation, the board house agreed to cook up a new batch of boards, which [Steve] is waiting patiently to receive.


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

Retrotechtacular: The Gossamer Condor

For centuries, human-powered flight eluded mankind. Many thought it was just an impossible dream. But several great inventions have been born from competition. Challenge man to do something extraordinary, offer him a handsome cash incentive, and he may surprise you.

In 1959, London’s Aeronautical Society established the Kremer Prize in search of human-powered flight. The rules of the Kremer Prize are simple: a human-powered plane must take off by itself and climb to an altitude of ten feet. The plane must make a complete, 180° left turn, travel to a marker one-half mile away, and execute a 180° right turn. Finally, it must clear the same ten-foot marker. While many tried to design crafts that realized this dream, man is, at his strongest, a weak engine capable of about half a horsepower on a good day.

Continue reading “Retrotechtacular: The Gossamer Condor”

Retrotechtacular: The Sylvania Tube Crusher

This week, we’re switching off the ‘Tube and taking a field trip to Emporium, Pennsylvania, home of the Sylvania vacuum tube manufacturing plant. Now, a lot of companies will tell you that they test every single one of their products, ensuring that only the best product makes it into the hands of John Q. Public. We suspect that few of them actually do this, especially these days. After all, the more reliable the product, the longer it will be before they can sell you a new one.

sylvania-tube-crusher-thumbFor Sylvania, one of the largest tube manufacturers of the golden age, this meant producing a lot of duds. A mountain of them, in fact, as you can see in the picture above. This article from the January 1957 issue of Popular Electronics vilifies forgers who used all kinds of methods to obtain defective tubes. They would then re-brand them and pass them off as new, which was damaging to Sylvania’s good name and reputation.

In addition to offering a reward for turning in known tube forgers, Sylvania did the most reasonable thing they could think of to quash the gray market, which was building a tube-crushing machine. Pulverizing the substandard tubes made sure that there were no “factory seconds” available to those fraudsters. After crushing shovelful after shovelful of tubes, the glass splinters were removed through a flotation separation process, and the heavy metals were recovered.

Did we get you all hot about tubes? Here’s how Mullard made their EF80 model.

[Thanks for the tip, Fran!]

Retrotechtacular is a weekly column featuring hacks, technology, and kitsch from ages of yore. Help keep it fresh by sending in your ideas for future installments.

Automatic Plant Care Minus the Microcontroller

Plants are a nice addition to most any habitat. Many of them bear flowers or attractive foliage, some of them help filter the air, and others, like aloe vera, have medicinal properties. While some plants require very little care, they all need a little moisture at some point. Overall, plant care is a bit fiddly: water them too much and you run the risk of root rot; water too little and risk death by dehydration. Hackaday alum [Kevin Darrah] would prefer not to gamble with either condition, and so in the course of a weekend’s time, he constructed a solar-powered automatic plant watering system from components he had on hand.

While he likely had a microcontroller or two lying around, he didn’t use one. His is a system of MOSFETs that trigger a motorized pump from one of those automatic bug spray bottles to draw from a reservoir and water the plant. The solar panel charges a bank of 6800µF capacitors that [Kevin] took out of an old receiver. When the desired charge is reached, the small soil sensor module is powered, assessing the moisture level. If the level is below the threshold determined by a trimmer pot, the power from the capacitor bank is dumped to the water pump and his plant gets a drink.

[Kevin]’s design deals nicely with the possible pitfalls of solar power. He’s included a 0.1µF cap to ensure latching through the system, and added a bleed resistor so that the pump is never powered unnecessarily. After running it for a couple of days, he’s already seeing moisture regulation in the soil. His complete demonstration and theory of operation is after the break. If you’re into solar power but aren’t quite ready to ditch the µC, check out this Arduino-controlled solution for thirsty tomatoes or this PIC-powered plant pacifier.

Continue reading “Automatic Plant Care Minus the Microcontroller”

Laugh Track Jacket is Actually a Blazer

Picture it: your first open mic night at Larry’s Laugh Lounge. You’re up second in the lineup. It’s better than going first, but the crowd is far from hitting the two-drink minimum and your dad jokes are going over like a lead balloon. What now? Time for your secret weapon. You throw out the ‘tough crowd’ line while casually reaching into a pocket of your herringbone blazer. You press a button and the sound of crickets reaches the microphone. Someone chortles near the back. You smile, and remembering that Barbie joke from Reddit, your act takes a turn for the profane and the sweet sound of your first real laugh is forever burned in your memory.

This laugh track jacket from Adafruit’s [Becky Stern] is based on their own audio FX board, a standalone unit that can store and play WAV and OGG files. The board is also available with 16MB of flash for extended pre-recorded Foley artistry. This is an easy solder-and-sew project with a lot of wearable applications, and all of the components are available in the Adafruit store. There are plenty of places to get free sound effects that are already in WAV format, as the board does not support MP3s. As always, [Becky] has provided a clear and thorough guide with plenty of pictures and an introduction video that you can see after the break.

Continue reading “Laugh Track Jacket is Actually a Blazer”

Handheld Linux Terminal Gets an A+

Are you all thumbs when it comes to Linux? If you follow [Chris]’s guide to building a handheld Linux terminal, that particular condition could work to your advantage. His pocket-sized machine is perfect for practicing command line-fu and honing your scripting skills on the go.

[Chris]’s creation is built around a Raspberry Pi A+ that he stripped to its essentials by removing the GPIO pins, HDMI and USB ports, the audio port, and the camera and display ports. It’s housed in a pair of plastic 2.5″ hard drive enclosures connected with a piano hinge, making it about the size of a Nintendo DS. The display is an Adafruit PiTFT touch screen and in order to save space, he soldered it directly to the Pi.

The 2.4GHz wireless thumb keyboard has all the special characters necessary for Linuxing, but the four USB ports from a dismantled hub provide flexibility. If [Chris] were to make another one, he might use this slightly larger screen from Tindie and add some charging ports to the case.

[Thanks for the tip, ar0cketman]

Flexible Numitron Tube Clock Build

Hackers and makers alike often use whatever’s readily available. Sometimes this is done out of necessity, other times because of the desire to make something work without waiting for parts to ship or some store to open. And many times, we use what we already have simply because it presents a challenge. A couple of years ago, [Alan] made a beautiful clock that combines the lessons he learned from building a word clock with the challenges presented by some IV-9 and IV-16 Numitron tubes he acquired.

This build expanded [Alan]’s horizons while extending the use of his existing tools. The timekeeping is done with a word clock board he had designed previously that can utilize any of three kinds of RTC modules. Further flexibility is evident in the top board, which is designed with double footprints to accommodate through-hole or SMD shift registers and resistors. His current board iteration allows for chaining if you like your time displays long and specific. If the vintage blue reddish-orange glow of VFDs  Numitron tubes offends your eyes for some reason, there’s a dual-footprint for a single-color LED under each tube.

It’s worth mentioning that these are not Nixie tubes, they are vacuum fluorescent displays (VFD)s Numitron tubes.  If you already have or plan to acquire some but don’t know how to drive them, check out this Numitron tutorial we covered a few years back.

Edit: D’oh. As you have pointed out, these are Numitron tubes, not VFDs or Nixies. That is what multitasking will get you. We applaud your vigilance.