Sentry Robot Turns Bad Cat to Good

The household of [James Watts] has cats, and those cats have decided that various spots of carpet are just great for digging up with their claws. After some efforts at training the cats, [James] enlisted a robotic cat trainer with remote wireless sensors. The automated trainer does only one job, but it does that one job reliably and tirelessly, which is just what is needed in this case. A task like “automate training the cats to stop clawing the carpet” is really made up of many smaller problems, and [James] implemented a number of clever ideas in his solution.

First of all, the need for an automated solution has a lot to do with how pets form associations, and the need to have the negative reinforcement be in the right place at the right time to be effective. A harmless spritz of water in this case is used for correction and needed to be applied immediately, consistently, and “from out of nowhere” (instead of coming from a person.) Otherwise, as [James] discovered, spraying water when the cats clawed the carpet simply meant that they stopped doing it when he was around.

There were a number of tricky problems to solve in the process. One was how to reliably detect cats actually clawing the carpet. Another was how to direct the harmless spray of water to only the spot in question, and how to rig and manage a water supply without creating another mess in the process. Finally, the whole thing needed to be clean and tidy; a hackjob with a mess of wires strung everywhere just wouldn’t do.

base_frontTo achieve all this, [James] created a main sprayer unit that is wirelessly connected to remote sensor units using NRF24L01+ serial packet radios. When a remote senses that a trouble spot is being clawed, the main unit uses an RC servo to swivel a spray nozzle in the correct direction and give the offending feline a watery reminder.

The self-contained remote sensors use an accelerometer to detect the slight lifting of the carpet when it’s being clawed. [James] programmed the MMA8452Q three axis accelerometer to trigger an external pin when motion is sensed above a certain threshold, and this event is sent over the wireless link.

For the main sprayer unit itself, [James] cleverly based it around an off-the-shelf replacement windshield washer tank. With an integrated pump, tubing, and assortment of nozzles there was no need to design any of those elements from scratch. If you want to give the project a shot, check out the github repository — probably worth it it since one night is all it took to change the cat behavior which explains the lack of any action video.

Pet projects usually center around automating the feeding process, but it’s nice to see other applications. For something on the positive-reinforcement end of training, check out this cat exercise wheel that integrates a treat dispenser to encourage an exercise regimen.

Paper Airplane Machine Gun V2.0

A little over two years ago we posted an amazing contraption that holds a stack of paper sheets, folds them into paper planes, and launches them. There’s now a newer version — the PFM A5 v2.0. It is over a meter long, weighs about 10 kilograms, and features a mind-boggling number of gears and moving parts. Video is embedded below.

In one end travels one sheet of paper after the next. At each stage in the process the paper is folded (symmetrically) and creased by a vertical wheel to make up the keel of the finished plane before launching out the other end. Amazing, and not a jam or “PC Load Letter” error message in sight!

This, of course, has a purpose… junk ads from the sky!

Continue reading “Paper Airplane Machine Gun V2.0”

Taking First Place at IMAV 2016 Drone Competition

The IMAV (International Micro Air Vehicle) conference and competition is a yearly flying robotics competition hosted by a different University every year. AKAMAV – a university student group at TU Braunschweig in Germany – have written up a fascinating and detailed account of what it was like to compete (and take first place) in 2016’s eleven-mission event hosted by the Beijing Institute of Technology.

AKAMAV’s debrief of IMAV 2016 is well-written and insightful. It covers not only the five outdoor and six indoor missions, but also details what it was like to prepare for and compete in such an intensive event. In their words, “If you share even a remote interest in flying robots and don’t mind the occasional spectacular crash, this place was Disney Land on steroids.”

Continue reading “Taking First Place at IMAV 2016 Drone Competition”

Convert that Cheap Laser Engraver to 100% Open-Source Toolchain

laserweb-on-cheap-laser-squareLaserWeb is open-source laser cutter and engraver software, and [JordsWoodShop] made a video tutorial (embedded below) on how to convert a cheap laser engraver to use it. The laser engraver used in the video is one of those economical acrylic-and-extruded-rail setups with a solid state laser emitter available from a variety of Chinese sellers (protective eyewear and any sort of ventilation or shielding conspicuously not included) but LaserWeb can work with just about any hardware, larger CO2 lasers included.

LaserWeb is important because most laser engravers and cutters have proprietary software. The smaller engravers like the one pictured above use a variety of things, and people experienced with larger CO2 laser cutters may be familiar with a piece of software called LaserCut — a combination CAD program and laser control that is serviceable, but closed (my copy even requires a USB security dongle, eww.)

LaserWeb allows laser engravers and cutters to be more like what most of us expect from our tools: a fully open-source toolchain. For example, to start using LaserWeb on one of those affordable 40 W blue-box Chinese laser cutters the only real hardware change needed is to replace the motion controller with an open source controller like a SmoothieBoard. The rest is just setting up the software and enjoying the added features.

Continue reading “Convert that Cheap Laser Engraver to 100% Open-Source Toolchain”

The Ninja Run: a VR Movement Experiment

VR is an area that is seeing plenty of DIY experimentation, and [FultonX] has an interesting hack of sorts in that he’s discovered something that meshes well with how we perceive motion and movement. It’s an experimental movement system for VR he calls the Ninja Run, and it somewhat resembles skiing.

ninja-run-analysis-optimizedEven room-scale VR suffers from the fact that the player is more or less stuck in one place. Moving the player from one spot to another isn’t currently a gracefully solved problem, and many existing methods are not immersive or have other drawbacks. One solution in use is a sort of teleportation, another “slides” the player to another area on command (like gliding across ice). [FultonX] found these existing solutions lacking, and prototyped the Ninja Run concept which he found was surprisingly intuitive and effective. Video demo embedded below.

Continue reading “The Ninja Run: a VR Movement Experiment”

Revealed: Homebrew Controller Working in Steam VR

[Florian] has been putting a lot of work into VR controllers that can be used without interfering with a regular mouse + keyboard combination, and his most recent work has opened the door to successfully emulating a Vive VR controller in Steam VR. He uses Arduino-based custom hardware on the hand, a Leap Motion controller, and fuses the data in software.

We’ve seen [Florian]’s work before in successfully combining a Leap Motion with additional hardware sensors. The idea is to compensate for the fact that the Leap Motion sensor is not very good at detecting some types of movement, such as tilting a fist towards or away from yourself — a movement similar to aiming a gun up or down. At the same time, an important goal is for any added hardware to leave fingers and hands free.

Continue reading “Revealed: Homebrew Controller Working in Steam VR”

Hybrid Raspberry Pi + PIC32 = Oscilloscope and Function Generator

The PicBerry is a student final project by [Advitya], [Jeff], and [Danna] that takes a hybrid approach to creating a portable (and affordable) combination digital oscilloscope and function generator. It’s based on the Raspberry Pi, features an intuitive Python GUI, and can generate and measure simultaneously.

But wait! The Raspberry Pi is a capable little Linux machine, but meeting real-time deadlines isn’t its strong suit. That’s where the hybrid approach comes in. The Pi takes care of the user interface and other goodies, and a PIC32 over SPI is used for 1 MHz sampling and running a DAC at 500 kHz. The idea of combining them into PicBerry is to get the best of both worlds, with the Pi and PIC32 each doing what they are best at. The readings are sent in batches from the PIC32 to the Pi, where the plot is updated every 30 ms so that user does not perceive any visible lag.

The project documentation notes that improvements can be made, the speeds are a far cry from regular bench equipment, and the software lacks some typical features such as triggering, but overall not bad at all for under $50 of parts. In fact, there are hardly any components at all beyond the Raspberry Pi, the PIC32, and a MCP4822 digital-to-analog converter. A short demo video is embedded below.

Continue reading “Hybrid Raspberry Pi + PIC32 = Oscilloscope and Function Generator”