Does This Demo Remind You of Mario Kart? It Should!

Here’s a slick-looking VGA demo written in assembly by [Yianni Kostaris]; it’s VGA output from an otherwise stock ATmega2560 at 16MHz with no external chips involved. If you’re getting some Super Mario Kart vibes from how it looks, there’s a good reason for that. The demo implements a form of the Super Nintendo’s Mode 7 graphics, which allowed for a background to be efficiently texture-mapped, rotated, and scaled for a 3D effect. It was used in racing games (such as Super Mario Kart) but also in many others. A video of the demo is embedded below.

[Yianni] posted the original demo a year earlier, but just recently added detailed technical information on how it was all accomplished. The AVR outputs VGA signals directly, resulting in 100×120 resolution with 256 colors, zipping along at 60 fps. The AVR itself is not modified or overclocked in any way — it runs at an entirely normal 16MHz and spends 93% of its time handling interrupts. Despite sharing details for how this is done, [Yianni] hasn’t released any code, but told us this demo is an offshoot from another project that is still in progress. It’s worth staying tuned because it’s clear [Yianni] knows his stuff.

Continue reading “Does This Demo Remind You of Mario Kart? It Should!”

A Micro RC Plane Builder Shares His Tricks

There are individuals who push tools, materials, and craftsmanship to the limit in the world of micro RC aircraft, and [Martin Newell] gives some insight into the kind of work that goes into making something like a 1:96 scale P-51 Mustang from scratch. The tiny plane is 100% flyable. It even includes working navigation lights and flashing cannons (both done with 0402 LEDs) and functional, retractable landing gear. It weighs an incredible 2.9 grams. Apart from the battery, everything in the plane was built or assembled from scratch. A video is embedded below.

Continue reading “A Micro RC Plane Builder Shares His Tricks”

DIY Wire Spooler with Clever Auto-Tensioning System

[Solarbotics] have shared a video of their DIY wire spooler that uses OpenBeam hardware plus some 3D printed parts to flawlessly spool wire regardless of spool size mismatches. Getting wire from one spool to another can be trickier than it sounds, especially when one spool is physically larger than the other. This is because consistently moving wire between different sizes of spools requires that they turn at different rates. On top of that, the ideal rate changes as one spool is emptying and the other gets larger. The wire must be kept taut when moving from one spool to the next; any slack is asking for winding problems. At the same time, the wire shouldn’t be so taut as to put unnecessary stress on it or the motor on the other end.

There aren’t any build details but the video embedded below gives a good overview and understanding of the whole system. In the center is a tension bar with pulleys on both ends though which the wire feeds. This bar pivots at the center and takes up slack while its position is encoded by turning a pot via a 3D printed gear. Both spools are motor driven and the speed of the source spool is controlled by the position of the tension bar. As a result, the bar automatically takes up any slack while dynamically slowing or speeding the feed rate to match whatever is needed.

Continue reading “DIY Wire Spooler with Clever Auto-Tensioning System”

Smart Eyeglasses That Auto Focus Where You Look

A University of Utah team have a working prototype of a new twist on fluid-filled lenses for correction of vision problems: automatic adjustment and refocus depending on what you’re looking at. Technically, the glasses have a distance sensor embedded into the front of the frame and continually adjust the focus of the lenses. An 8 gram, 110 mAh battery powers the prototype for roughly 6 hours.

Eyeglasses that can adapt on the fly to different focal needs is important because many people with degraded vision suffer from more than one condition at the same time, which makes addressing their vision problems more complex than a single corrective lens. For example, many people who are nearsighted or farsighted (where near objects and far objects far objects and near objects are seen out of focus, respectively) also suffer from a general loss of the eye’s ability to change focus, a condition that is age-related. As a result, people require multiple sets of eyeglasses for different conditions. Bifocal or trifocal or progressive lenses are really just multiple sets of lenses squashed into a smaller form factor, and greatly reduce the wearer’s field of view which is itself a significant vision impairment. A full field of view could be restored if eyeglass lenses were able to adapt to different needs based on object distance, and that is what this project achieves.

Continue reading “Smart Eyeglasses That Auto Focus Where You Look”

Sharing Virtual and Holographic Realities via Vive and Hololens

An experimental project to mix reality and virtual reality by [Drew Gottlieb] uses the Microsoft Hololens and the HTC Vive to show two users successfully sharing a single workspace as well as controllers. While the VR user draws cubes in midair with a simple app, the Hololens user can see the same cubes being created and mapped to a real-world location, and the two headsets can even interact in the same shared space. You really need to check ou the video, below, to fully grasp how crazy-cool this is.

Two or more VR or AR users sharing the same virtual environment isn’t new, but anchoring that virtual environment into the real world in a way that two very different headsets share is interesting to see. [Drew] says that the real challenge wasn’t just getting the different hardware to talk to each other, it was how to give them both a shared understanding of a common space. [Drew] needed a way to make that work, and you can see the results in the video embedded below.

Continue reading “Sharing Virtual and Holographic Realities via Vive and Hololens”

Let’s Prototype! This Filament End Needs 80 Decibels

Reaching the end of a spool of filament when 3D printing is inevitable. The result ranges from minor annoyance to ruined print. Recently, I needed to print a number of large jobs that used just over half a spool of plastic each. Unwilling to start every print with a fresh spool (and shelve a 60% used one afterward), I had a problem to solve. What my 3D printer needed was filament monitor, or at least that’s what I thought.

After reviewing some projects and aftermarket options, I ended up making my own. Like most prototypes, it wasn’t an instant success, but that’s fine. One of the goals of prototyping is not only to validate that the problems you’re solving are the same ones you think exist, but also to force other problems and issues you may not have considered to the surface. Failure is only a waste if nothing is learned, and the faster and cheaper that learning happens, the better.

Sensible design steps also help minimize waste, so I started by looking at what kind of solutions already existed.

Continue reading “Let’s Prototype! This Filament End Needs 80 Decibels”

Vive Tracker Brings Easier VR Hacking

CES 2017 is over and there were VR gadgets and announcements aplenty, but here’s an item that’s worth an extra mention because it reflects a positive direction we can’t wait to see more of. HTC announced the Vive Tracker, to be released within the next few months.

The Tracker looks a bit like a cross between a hockey puck and a crown. It is a self-contained, VR trackable device with a hardware port and built-in power supply. It can be used on its own or attached to any physical object to make that object trackable and interactive in VR. No need to roll your own hardware to interface with the Vive’s Lighthouse tracking system.

Valve have been remarkably open about the technical aspects of their hardware and tracking system, and have stated they want to help people develop their own projects using the system. We’ve seen very frank and open communication on the finer points of what it took to make the Lighthouse system work. Efforts at reverse-engineering the protocol used by the controller even got friendly advice. For all the companies making headway into VR, Valve continues to be an interesting one from a hacking perspective.

[Image source for bottom of Tracker: RoadToVR]