Metal 3D Printing: Insta-Layers

Selective Metal Sintering is cool but slow. Fear not, a technology that was initially developed to smooth and pattern laser beams is here to save the day, according to a new paper by Lawrence Livermore researchers.

In a paper titled “Diode-based additive manufacturing of metals using an optically-addressable light valve,” the researchers lay out a procedure for using an array of high-powered laser diodes among other things to print a whole layer of metal from powdered metal at one time. No more forward and backward, left and right. Just one bright flash and you’re done. Naturally, the technology is still infantile, but huge 3D printed metallic parts are something we’ve always hoped for.

According to [Matthews], the first author of the paper, the mojo of the process comes from a customized laser modulator: the Optically Addressable Light Valve which functions similarly to liquid crystal-based projectors but can handle the high energies associated with powerful lasers. There’s more information straight from the paper’s authors in this phys.org interview.

While it’s true that now is the time for direct metal 3D printing, it appears that for the time being the average hacker is stuck with alternative methods for printing metal. While it’s not the same, pewter casting with PLA might suffice.

Thanks to [Kevin] for sending this in!

OSM (Pronounced Awesome) Hardware Makes DNA in Space

OSM stands for Oligonucleotide Synthesizer designed for use in Microgravity, meaning that it’s a device that makes arbitrary DNA strands (of moderate length) in space. Cool eh? I’ve been working on this project for the last eight months with a wonderful team of fellow hackers as part of the Stanford Student Space Initiative, and I’d like to share what we’re doing, what we’ve already done, and where we’re going.

Why space? Well, first of all, space is cool. But more seriously, access to arbitrary DNA in space could accelerate research in a plethora of fields, and the ability to genetically engineer bacteria to produce substances (say on a martian colony) could mean the difference between death and a life-saving shot. In short, it’s hard to predict the exact DNA one might need for research or practical use before hand.

First, as Hackaday tends to be a little light on biology terminology, we need to get a little vocabulary out of the way to grease the ways of communication. If you have a Ph.D. in synthetic biology, you might want to skip this section. Otherwise, here are five quick terms that will make your brain bigger so stay with me!

Continue reading “OSM (Pronounced Awesome) Hardware Makes DNA in Space”

Making Tension Based Furniture

[Robby Cuthbert,] an artist and designer based out of Fort Collins, Colorado is creating stable cable tables that are simultaneously a feat of engineering and a work of art.

[Cuthbert’s] tables are held together by 1/16″ stainless steel cables that exert oppositional tensions that result in a structurally stable and visually appealing coffee table. In his video, [Cuthbert] leads us through his process for creating his tables, step by step. [Cuthbert] starts by cutting out bamboo legs on his CNC mill. He then drills holes in each leg for cables and mounts each leg on his custom table jig. Then, he attaches the stainless steel cabling taking care to alternate tension direction. The cables are threaded through holes in the legs and affixed with copper crimps. After many cables, he has a mechanical structure that can support his weight that also looks fantastic. All in all, [Cuthbert’s] art is a wonderful example of the intersection of art and engineering.

If we’ve whet your appetite, fear not, we have featured many tension based art/engineering hacks before. You might be interested in these computer-designed portraits or, if the thought of knitting by hand gives you the heebie-jeebies, the Autograph, a string art printer might be more your style.

Video after the break.

Continue reading “Making Tension Based Furniture”

Easy DIY Microfluidics

Microfluidics, the precise control and manipulation of small volumes of liquids, is heavily used in any field that does small-scale experiments with expensive reagents (We’re looking at you, natural sciences.) However, the process commonly used to create microfluidic devices is time and experience intensive. But, worry not: the Uppsala iGEM team has created Chipgineering: A manual for manufacturing a microfluidic chip.

Used while developing everything from inkjet print heads to micro-thermal technologies, microfluidic systems are generally useful. Specifically, Uppsala’s microfluidic device performs a simple biological procedure, a heat-shock transformation, as a proof of concept. Moreover, Uppsala uses commonly available materials: ready to pour PDMS (a biologically compatible silicon) and a 3D printed mold. Additionally, while the team used a resin 3D printer, there seems to be little reason that a fused deposition modeling (FDM) printer wouldn’t work just as well. Particularly interesting is how they sandwich their PDMS between two plates, potentially allowing easy removal and replacement of reagents without external mechanisms. And, to put the cherry on top, Uppsala’s well-illustrated documentation is a joy to read.

This isn’t the first time we’ve covered microfluidic devices, and if you’re still in the prototyping phase, these microfluidic LEGO-like blocks might be what you need. But, if you prefer macrofluidics, this waste shark that aims to clean our oceans might be more your style.

How to Trick Your Electrical Meter By Saving Power

A group of Dutch scientists have been testing out some of today’s “smart” electrical meters to check their accuracy, among other things. Not ones to disappoint, the scientists have found consistently false readings that in some cases are 582% higher than actual energy consumption.

With experiments lasting for six months, the researchers tried to focus on meters representative of those commonly used in the Netherlands and manufactured between 2004 and 2014. Moreover, the researchers tried to reproduce standard household energy consumption patters rather than focusing on stress tests.

Their results? Well, “results varied wildly, with some meters reporting errors way above their disclosed range, going from -32% to +582%. Tests with uncommon results were repeated several times and the results were within a few percents of the original.” Moreover, “The greatest inaccuracies were seen when researchers combined dimmers with energy saving light bulbs and LED bulbs.” Not constrained to energy saving light bulbs, the inaccuracies are, ironically, tied to devices with integrated energy saving features. (Certainly makes us want to keep a close eye on our electric meters.)

“The reason for faulty readings appears to be the current sensor, and the associated circuitry,” said researchers. “The experimental results […] show that static energy meters can be pushed into faulty reading (positive and negative) if sufficiently fast pulsed currents are drawn by the consumer”

It is worth noting that there is contradictory research published by “the European voice of the providers of smart energy solutions” that maintains that “there is no reason to question smart metering technology”. Still, we wouldn’t blame you if you wanted a second opinion.

Thanks [acs] for sending this in!

Canary for USB Ports

If you’re a paranoid system admin, [errbufferoverfl] has your back with software that keeps track of whenever someone plugs in or disconnects an USB-based device from a workstation.

Christened USB Canary, [errbufferoverfl’s] tool is written in Python. However, even though Python is cross-platform, USB Canary only works on Linux currently. But, fret not: [errbufferoverfl] is already working on Windows and Mac versions.

Primarily, USB Canary watches USB connectors for any activity and logs anything it sees. Moreover, when a USB device is plugged in or unplugged, USB Canary can alert the owner of the workstation via an SMS message courtesy of the Twilio API, post a message in a Slack channel or even make a noise to alert a nearby sysadmin. Additionally, USB Canary can be configured to only run when the workstation is locked (if you’re not completely paranoid).

[errbufferoverfl’s] USB Canary was born out of dissatisfaction with current workstation monitoring tools. You see, most tools only notify users after someone has logged on. [errbufferoverfl] points out that there are means to automate attacks without logging in, and we can think of many unsavory things that can be done when logged out.

While USB Canary won’t protect you from -220V , it might at least warn of a BadUSB attack. But, for the really paranoid, why not try GoodUSB?

[via bleepingcomputer]

How to Find a Twitter Account

[Ashley Feinberg] is not one to say no to a challenge. When James Comey (the current Director of the Federal Bureau of Investigation for the United States of America) let slip that he has a secret Twitter and Instagram account, [Ashley] knew what she had to do.

At the beginning, [Ashley] knew only a few things: (1) Comey had recently joined twitter and (2) he only allows his “immediate relatives and one daughter’s serious boyfriend” to follow him. As such, [Ashely] deduced that “if we can find the Instagram accounts belonging to James Comey’s family, we can also find James Comey.”

To start, [Ashley] found the Instagram account of Comey’s 22-year-old son, a basketball star at Kenyon College. Not phased by Brien’s locked down Instagram account, [Ashley] requested access to Brien’s account in order to access the “Suggested for You” selections that are algorithmically generated from Brien Comey’s account. Sifting through the provided accounts [Ashley] found one that fit Comey’s profile: locked down with few friends. That account was named reinholdniebuhr. Not sure it was, in fact, James Comey, [Ashley] found Comey’s senior thesis on theologian Reinhold Niebuhr and televangelist Jerry Falwell as verification.

With Comey’s Instagram found, [Ashley] moved back to Twitter (something y’all can’t seem to get enough of). With only seven accounts on Twitter using some variation of “Reinhold Niebuhr” as a user name, [Ashley] was quickly able to narrow it down to one account (@projectexile7) via profiling, sealing the deal on an awesome hack filled quest. Can’t get enough of social media? Don’t worry, you never have to be disconnected.