Ask Hackaday: Are Conductive Inks Going to Make It?

It’s amazing how affordable PCB fabrication has become. It has long been economical (although not always simple) to fabricate your own singe and double-sided boards at home, the access to professional fabrication is becoming universal. The drive continues downward for both cost and turnaround time. But there is growing interest in the non-traditional.

Over the last year we’ve seen a huge push for conductive-ink-based PCB techniques. These target small-run prototyping and utilize metals (usually silver) suspended in fluid (think glue) to draw traces rather than etching the traces out of a single thin layer of copper. Our question: do you think conductive in will become a viable prototyping option?

Voltera V-One Circuit Board Prototyping Machine

I recorded this interview at 2015 CES but was asked not to publish it until their crowd funding campaign went live. If you haven’t been paying attention, Voltera is at almost 400% of their $70k goal with 26 days remaining. This printer definitely works. You can print circuits, solder components or reflow them, and there’s even a second non-conductive ink that can be used to insulate between traces when they cross over one another. In the video [Alroy] suggests Voltera for small production runs of 10-20 boards. Would you see yourself using this for 10-20 boards?

Personally, I think I could solder point-to-point prototypes in less time. Consider this: the V-One will print your traces but you still must solder on the components yourself. If the board design reaches a high level of complexity, that timing may change, but how does the increased resistance of the ink compared to copper traces affect the viability of a board? I assume that something too complex to solder point-to-point would be delving into high-frequency communications (think parallel bus for LCD displays, etc.). Is my assumption correct? Do you think conductive ink will get to the point that this is both viable and desirable over etching your own prototypes and how long before we get there?

Now, I certainly do see some perfect use-cases for Voltera. For instance, introduction to circuit design classes. If you had one of these printers at the middle school or high school level it would jump-start interest in electronics engineering. Without the need for keeping chemical baths like Cuperic Chloride or Ferric Chloride on hand, you could walk students through simple board design and population, with the final product to take home with them. That’s a vision I can definitely get behind and one that I think will unlock the next generation of hardware hackers.

Correction: [Arachnidster] pointed out in the comments that Voltera is still working on being able to reflow boards printed by the V-One. On their Kickstarter page they mention: “(Reflow onto Voltera printed boards is currently under development)”

Why You Should Care About Software Defined Radio

It hasn’t become a household term yet, but Software-Defined Radio (SDR) is a major player on the developing technology front. Whether you’re building products for mass consumption, or just playing around for fun, SDR is worth knowing something about and I’ll prove it to you.

Continue reading “Why You Should Care About Software Defined Radio”

Omnibus Seen in the Wild

February 9th has come and gone and the Hackaday Omnibus 2014 is now shipping. If you were one of the early adopters who pre-ordered, thank you very much it should be in your hands shortly! If you missed out on the Pre-Order, don’t worry you can still get a copy of your very own but we only ordered a small over-run so don’t wait too long.

The Omnibus celebrates the best our writers and illustrators published in 2014 with an 80-page full color volume printed on premium paper. From tales of technology past, to current events, the Omnibus tells the story of what the high points in hardware were last year. We have fallen in love with having a physical version of this content since the proof copies hit our hands a month ago. We believe that this is a conversation waiting to happen — set it out and watch your friends gravitate toward it.

We’ve already seen them popping up on Twitter and we’d love to see more. Make sure to Tweet a picture of your copy to @Hackaday with hashtag #hadOmnibus. We’re happy to see any pictures shared, but if you’re one of the lucky souls who works with awesome hardware make sure to take some ‘extreme’ shots. For instance, reading while you wait for the cyclotron to warm up, the nuclear sub to surface, or your ride to pick you up from Amundsen-Scott.

This is our first ever print edition and we’ve gone to great lengths to make sure it’s something you’ll be proud to have on your coffee table, bookshelf, or anywhere for years to come.

[Photos via @jbdatko, @JeremySCook, @rdcampbell13, @ToddTerrazas]

Learning Single-Filament Printing Strength from Arachnids

If you can get over how creepy spiders can be there’s a lot to learn from them. One of nature’s master-builders, they have long been studied for how they produce such strong silk. What we hadn’t realized is that it’s not strictly cylindrical in nature. The spider silk exhibits intermittent expansions to the diameter of the — for lack of a better word — extrusion. This project uses biomimickry to replicate the strength of that design.

The print head is actually four extruders in one. In the clip after the break you can see the black center filament’s rigidity is augmented with three white filaments positioned around it radially. The use of this knowledge? That’s for you to decide. As with some of the most satisfying engineering concepts, this is presented as an art installation. As if the rhythmic movements of that print head weren’t enough, they mounted it on a KUKA and plopped the entire thing down in the center of a room for all to see.

The demo isn’t the only awesome bit. You’ll want to click the link at the top to see the exploded-parts diagram porn found half-way down the page. All is beautiful!

Continue reading “Learning Single-Filament Printing Strength from Arachnids”

Robo-Wire-Snips Clip 1k Segments

Quick, you need 1000 pieces of wire of the same length, what do you do? The disappointing answer is to put on the miniseries masterpiece Frank Herbert’s Dune and get to work snipping those bits by hand. We usually clamp a scrap piece of molding protruding perpendicular to the bench to use as a length guide in these cases.

The more exciting answer is to build a robot to do it for you. There’s no way you can build the robot faster than you could cut the wire… unless you have admirable rapid prototyping skills like [Eberhard]. He strapped together a barebones machine from two motors, and one switch in no time. Pretty amazing!

Wire coming off the spool feeds through two guides held by a third-hand. The outfeed length depends entirely on timing; two slices of wine cork drive the wire which passes through the open jaws of a wire snip. Those snips are hot-glued in place, with a motor winding up a strip connected to the other handle in order to make the cut. The only feedback is a limit switch when the snip is fully open.

It is entirely possible to get even less advanced. Here’s the same concept without the limiting switch. We appreciate the eloquence of the snipper squeeze method on that one. But for the most part we think you’ll be interested in one that goes about stripping the wire ends as well as cutting to length.

Continue reading “Robo-Wire-Snips Clip 1k Segments”

PortableSDR Needs a Cinderella Story to Finish its Kickstarter

If you haven’t backed PortableSDR on Kickstarter, now’s the time to do it. [Michael Colton’s] project which frees a Software Defined Radio from being shackled to a computer is in the final three days and needs about $17,500 to make it.

We’d really like to see this one succeed, and not just because PortableSDR took 3rd place in the 2014 Hackaday Prize. Many a time we’ve heard people forecast the death of amateur radio (ham if you will). The ham community is special, it’s a great way to get mentorship in electronics, and deals in more than just digital circuitry. Plus, as [Greg] has pointed out, having a license and some know-how lets you build and operate really powerful stuff!

We see the PortableSDR as one way to renew interest in the hobby. We especially like it that you don’t need a license to operate the basic model — the transmitting circuits aren’t enabled when it arrives. This means you can learn about SDR, explore what’s going on over the airwaves, and only then take the leap by applying for your license and hack the unit to transmit. To be fair, the transmitter portion of the project hasn’t been published yet, which is about the only real concern we read in the Kickstarter comments. But we have faith that [Michael] will come through with that part of it. And if he needs help we’re sure he’ll have no problem finding it.

Now’s the time… let’s pull this one out in the final days!

Celebrating the Omnibus Launch

On Thursday night Hackaday hosted an event in San Francisco to commemorate the launch of the 2014 Hackaday Omnibus. Our first print edition, compiled to commemorate some of the finest original content which we published last year should begin shipping as early as today. To celebrate the occasion, we were graced by a full house of amazing guests. Is it lame to say some of the people I respect most in the world were there?

Lightning Talks

Whenever you get a lot of people together, a good rule of thumb is to seize the opportunity to have them speak about what they’re doing. It’s not a big “ask” either; 8-minutes on what you’re passionate about is pretty simple.

[Jonathan Foote] gave a talk on generating RGBY colors from Hue. The project is ongoing but explores the concept of mixing colors of light with one additional source added to traditional red, green, and blue. [Priya Kuber] recently moved to San Francisco. She recently concluded more than a year of standing up the Arduino office in India (relevant but unrelated video). Her talk covered the emerging maker/hacker hardware scene in India which is showing amazing growth. [Chris McCoy] demonstrated his Raver Rings which began a Kickstarter on the same day. [Elecia White] of embedded.fm spoke about the educational opportunities that podcasts and other delivery medium provide and the responsibility we all have to guide our continued learning. [Emile Petrone] talked about an upcoming feature for his site Tindie which will add manufacturer information and ratings to the mix. And rounding things out [Dave Grossman] gave a talk on his Virtual Carl project which used video footage of his grandfather, combined with a Raspberry Pi and peripherals to create a remembrance of the man in virtual form.

Demos

IMG_4602
[Ben Krasnow] shows off the chamber containing supercritical carbon dioxide.
During the rest of the evening there were a few spectacular demos going on. First, [Ben Krasnow] who is well known for his Applied Science series (among a million other accolades), brought at least two demos with him. The first was a pressure chamber made out of two massively thick discs of acrylic separated by a metal ring. Inside the void he had pumped and pressurized CO2. When the chamber is heated it, the contents become Supercritical Carbon Dioxide and the visual transition between liquid and gas disappears.

He also showed off a lens that can be focused electronically. This is not mechanical, there are zero moving parts. Instead a droplet of oil floating in water is the lens. A 75V, AC power supply pulls on the droplet, altering the meniscus to focus the lens. He didn’t fabricate the device from scratch, but the concept is completely new to us and quite interesting.

[Brian Benchoff] poses with Othermill hardware
[Brian Benchoff] poses with Othermill hardware
Othermill is located in the SF area. They produce a desktop milling machine which is spectacular at routing PCBs. The little wonder isn’t limited to that though. Above you can see [Brian] holding up a milled wooden plaque which has milled mother-of-pearl inlays. The table is also strewn with other examples in wax, metal, wood, and more.

Cocktail Hour

The rest of the evening was devoted to conversation on all topics. Get enough hardware geeks in one room and they’ll solve the world’s problems, right? That’s a conversation for another post.

Couldn’t make it to this one but still in the San Francisco area at least occasionally? We held this at the Supplyframe office. They host a ton of great events like the Hardware Developers Didactic Galactic.

[Thanks to Richard Hogben for the photos!]