Hot-Wire CNC Foam Cutter From E Waste

A couple of old DVD ROM drives and a compact photo printer is fairly standard fare at the thrift store, but what do you do with them? Hack them up to make a CNC foam cutter of course!

[Jonah] started with a couple LITE-ON brand DVD RW drives, which use stepper motors instead of plain old DC motors. This is a huge score since steppers make accurate positioning possible. With the internal frames removed, threaded rod and nuts were used to hold the two units parallel to each other forming the Z axis.

The feed mechanism from a Canon compact photo printer was then bolted onto the bottom to form the Y axis. Add a bit of nichrome wire for the cutting element (this can be found in old hair dryers) onto where the laser assembly of the DVD rom once lived, and you have the mechanics done.

Control is handled by an Arduino and some easy-driver modules to interface with the steppers. G-Code is generated by CamBam, which handles various cad files, or has its own geometry editor.

This is a fantastic way to get your feet wet in several ways; Cracking things open to harvest parts, driving steppers with simple micocontrollers, modeling and generating g-code, etc. The one issue we see with this build is a chicken-or-egg problem since you need to have a cube of foam cut down to somewhat strict dimensions before it will fit in this cutter. But we suppose that is really just an iterative design problem.

Continue reading “Hot-Wire CNC Foam Cutter From E Waste”

Hackaday Prize Entry: netBOOT Powercycles Your Modem When You Can’t

Many people have their home network setup with a dynamic dns service in order to remote access their files, printers, or Pi based security camera systems. Many people also suffer from less than stellar internet connectivity and find themselves unable to access their home system due to a stalled signal.

netBOOT is an Arduino based device that automatically resets your modem for you, when you are unable to. Core of the system is a standard issue ATMEGA328p based Arduino board combined with a W5100 Ethernet module, and a relay module. The software on the Arduino periodically pings a list of IP addresses and listens for a response. If none is found within 3 tries the relay module, which is connected inline with the DC power of your modem, is clicked open for 10 seconds and then returned closed. Once your modem has rebooted and re-synced everything should be good to go.

We don’t remember seeing this feature in the list of specs for Google’s new OnHub. The ability to reset bad connections seems like a feature that should be built into future-thinking routers, right?

The 2015 Hackaday Prize is sponsored by:

Reflow Solder Your Micro SD to Ensure it Doesnt Go Anywhere

SD cards are great inexpensive storage for your embedded project. Using SPI,  they only take a few wires to hook up, and every micro-controller has a FAT file system interface to drop in your project. Problem with SD cards are the connectors.

Usually connectors cost more than the brains of your project,  and the friction fit, spring loaded contacts are not ideal for temperature swings, humidity and high vibration applications. Wouldn’t it be nice if you could just solder the thing down, especially if you know you are never going to remove it?

[Timothée] decided to try and succeeded in reflow soldering a Micro SD card direct to a breakout board. While starting as a what if experiment, the PCB was laid out in Ki-Cad and sent off to a fab. Once returned the Micro SD was fluxed, tinned and fluxed again, then reflowed using an IR setup.

The end result is a handy breakout board where you never have to worry about someone swiping the card to jam in their camera, and is ready for any breadboard project.

Arduboy Classic Plays On Original Game Boy Screen

The Arduboy is a Kickstarter backed, 8 bit video game console that mimics the look of a very tiny Nintendo Gameboy. The Arduboy Classic is actually using the case, button and LCD screen from a classic Game Boy.

[uXe] is using the same brains, an ATMEGA32U4, along with a 328 as a co-processor to handle the classic “creme-n-spinich” gameboy screen. 2K of dual port ram acts as a buffer between the two micro-controllers meaning they can not only run while not being in lock step with eachother, but that each micro can read or write to the ram at the same time.

Currently the whole setup is spread out on a breadboard while all the interfacing is worked out, but it is working quite well. Future plans are to make a drop in motherboard replacement for the classic game system, and there is ample room for all the new electronics on the original footprint.

If you’re unfamiliar with the Arduboy project, check out our interview with it’s creator, [Kevin Bates]. That and the demo of [uXe’s] hack based on the project are both found after the break.

Continue reading “Arduboy Classic Plays On Original Game Boy Screen”

Bed Lights Keeps You From Stubbing Your Toe When Nature Calls

While out shopping for bed’s with his better half, [Shane] tried out one of the more expensive, all “bells and whistles” included models. While the aforementioned featurees were impressive, one stood out: motion controlled underlighting for when you had to get up in the middle of the night.

bed-underlighting-thumbKnowing that this feature would be easy to replicate [Shane] went about making his own version. Using PCV pipe to make the framework for the LED’s a 9 volt DC power supply, and a list of electronic components all that was left to figure out was the motion controls.

PIR motion sensors  are the natural choice and its simple enough to hook them up to the micro of your choice and bang out some code. It’s just as simple to hard wire them into a circuit skipping the added cost of the micro and complexity of the software.

The two PIR sensor outputs are wired though a diode OR gate, to a potentiometer to control sensitivity, and then to a pair of NPN transistors to ultimately control power to the LED strips. Now they have motion controlled night lights for their bed when nature calls in the middle of the night.

Tricking a Car Stereo to Think Your Cellphone is a Tapedeck

When you have an older vehicle there’s not a lot of options in the stock stereo department, often a CD player and tape deck is what you get. When you want to play your tunes from your mobile what do you do? Buying an adapter, or a new head unit for that matter, isn’t any fun. So why not hack it? This isn’t just a mechanical marriage of a Bluetooth dongle and an elderly stereo. Some real work went into convincing the stereo that the BT receiver was the stock tape deck.

car-stereo-logic-analyzerAttacking the outdated Cassette deck [kolonelkadat] knew that inside the maze of gears and leavers, most of it is moving around actuating switches to let the radio know that there is a tape inside and that it can switch to that input and play. Tricking the radio into thinking there is a tape inserted is handled by an Arduino. Using a logic analyzer [kolonelkadat] figured out what logic signals the original unit put out and replicating that in his Arduino code.

Audio is handled by the guts of a bluetooth speaker with the output redirected into the radio where the signal coming off the tape head normally would have been directed. Join us after the break for a couple of videos with all of the details.

Continue reading “Tricking a Car Stereo to Think Your Cellphone is a Tapedeck”

Wooden Escalator Fit for a Slinky

Our favorite mechanical master of woodworking, [Matthias Wandel], is at it again, this time making an endless staircase for a Slinky. Making an escalator out of 2×4’s and other lumber bits looks fairly easy when condensed down to a two and a half minute video. In reality a job like this requires lots of cuts, holes, and a ton of planning.

The hard part of this build seemed to be the motor arrangement. There is a sweet spot when it comes to Slinky escalator speeds. Too fast, and you’ll outpace the Slinky. Too slow, and the Slinky flies off the end of the escalator. Keeping the speed in check turned out to be a difficult task with the coarse speed control of a drill trigger. The solution was to ditch the drill and build a simple hand crank mechanism. The Slinky now can cascade down stairs as long as your arm holds out.

Join us after the break for 3 videos, the making of the escalator, a 140 step demonstration video, and a followup video (for geeks like us) explaining where the idea came from, whats wrong with the machine and possible improvements.

Thanks to [Jim Lynch] for the tip

Continue reading “Wooden Escalator Fit for a Slinky”