Cute Tiny Robot Gets a Pair of Hacked Eyes

One day while at our poor, poor Radio Shack, [davidhend] purchased a little 6-legged walking robot. It came with an infrared remote that allowed a user to control its movements from afar. After a few minutes of making the robot walk around [davidhend] got bored and decided it would be a great toy to hack.

His plan was to make the robot autonomous and able to avoid obstacles. To start off, the robot was taken apart enough to expose the circuit board. There he found a ST1155A bi-directional motor driver that was controlled by an on-board microcontroller. After checking out the ST1155A data sheet, [davidhend] thought he would be able to drive it with an Arduino. So, out came the soldering iron and all the unnecessary components were removed from the original circuit board.

An off the shelf PING))) sensor was mounted on the front of the robot and is responsible for detecting obstacles. That information is then sent back to the Arduino Nano which controls the motor driver to make the robot back up, turn and then start walking straight again until another obstacle is detected. [davidhend] made his Arduino Code (.zip file) available to anyone who wants to make a similar project. Check out the video after the break!

Oh, and if you plan to run down to the Shack to pick up a robot of your own you better do it like right now.

Continue reading “Cute Tiny Robot Gets a Pair of Hacked Eyes”

Hackintosh Project Looks Like a Mac, Smells Like a Mac…

It’s not often that you find a Macintosh dumped out on the side of the road. [GrandpaSquarepants] was one of the lucky individuals that did. Being the good friend that he is, he made his roomy carry the 50 lb behemoth back to their apartment. Not surprisingly, the machine didn’t boot up and ended up sitting around the apartment for a few years.

HackintoshFast forward from 2012 to present day and [G.S.] decided it was time to do something with that G5. That “something” wasn’t about fixing it. Instead, it was gutted to turn it into a Macintosh-cased Hackintosh. If you’re unfamiliar with Hackintosh, it’s a term used to describe a project that gets Mac OS to run on non-Apple hardware.

[G.S.] could have just crammed everything into the G5 case and called it a day but he decided to spend the time to make it look supremely presentable. The case was significantly modified to fit the non-Apple computer components, including the addition of a custom rear panel made from aluminum to mount the power supply, cooling fan and to allow access to the motherboard connectors. Take a close look; there are two CPU coolers in there. It was such a close fit that there is only 2.6mm (.1 inch) of clearance between the cooler and the case.

Two Dell U2415 monitors and an Apple wireless keyboard and mouse make up the rest of the setup. Overall, [G.S.] is happy with the final outcome of his project, well… except for the Apple mouse. He says that has got to go!

[via reddit]

Wireless Helmet Speakers Receive A+ For Distracting Wearer

What could be better than cruising around town on your fave scooter? Cruising around town on your fave scooter listening to some cool tunes, of course! [sswanton] was enrolled in an Industrial Design course and was tasked with creating a wireless radio project for a specific user (of his choice). He decided to add some wireless speakers to a motorcycle helmet and design a handlebar-mounted radio.

Helmet Radio[sswanton] started out by disassembling the ultra-inexpensive, old-school, battery-powered Sony ICF-S22 radio specified by the class. The stock case was discarded as he would have to make a new one that fits onto the bike’s handlebars. Plywood makes up majority of the frame while the cover is black acrylic. Getting the acrylic bent required heating to 160 degrees so that it could be bent around a form [sswanton] created specifically for this project. A few cutouts in the case allows the rider to access the volume and tuning knobs.

The speakers added to the helmet were from wireless headphones and came with a matched transmitter. The transmitter was removed from it’s unnecessarily large case, installed in the radio’s newly created enclosure and connected to the radio’s headphone output. Situating the headphone components in the ideal locations of the helmet required that the headphones be disassembled. The speakers were placed in the helmets ear cups. Part of the original headphone case and some control buttons were mounted on the outside of the helmet for easy access. The wires connecting the components had to be extended to reconnect the now spread-out parts.

In order to hear that sweet music all the rider needs to do is turn on the headphones and radio. Check this out to see some more helmet speakers, this time a little more wacky.

Inexpensive Ring Light Makes Macro Photos Easy

[edyb] uses his relatively inexpensive Cannon camera quite a bit. However, in dark areas or extreme closeups, the camera’s image quality leaves something to be desired. [edyb] hopped on the ‘net and found out that a ring light may cure his photo faux pas. Ring lights are nothing new but nothing existed for his lower-end point and shoot camera. With a USB-powered lamp and a spare AA battery pack kicking around, [edyb] decided to make his own.

First, the USB lamp was disassembled, luckily the LEDs were already laid out in a ring shape. The clear protective housing and gooseneck were discarded and the remaining PCB ring was glued directly to the camera. A female USB jack was then glued to the top of the camera and soldered to the two leads connected to the lamp’s PCB. The AA battery holder received a small switch and a male USB plug, also courtesy of a few dabs of glue. The now-assembled battery pack plugs directly into the camera via the USB connector and is its only method of attachment.

DIY Camera Light RingThe utilitarian modification may look crude but the results are anything but. Check out this close-up macro shot of a Canadian penny. Not too bad.

[edyb] has done some similar mods to other cameras, attaching components with magnets and even using an old Blackberry battery to power the LEDs showing that there is no one way to solve a problem. Check out the video after the break…

Continue reading “Inexpensive Ring Light Makes Macro Photos Easy”

Wireless Mic Helps Guitarist Rock Out Un-Tethered

Any guitarist knows what a tangled mess of cords can come out of a long jam session. One possible solution would be to get a wireless guitar system, however, such a setup can range in price from about 50 to several hundred dollars. That’s a big price to pay for not having to untangle some guitar cords.

[mattthegamer463] wanted a wireless setup but didn’t want to spend the cash on one. He’s a tinkerer and had a spare wireless microphone setup hanging around. So, he decided to try converting the wireless mic to work with his guitar.

Both microphones and guitar pickups work in similar manner. In a guitar pickup, the vibrating guitar string disturbs a magnetic field and induces a current in the pickup’s coil. That current is the guitar’s signal. Microphones are similar, air pressure waves vibrate a diaphragm or ribbon which then disturbs a magnetic field to create the signal. [mattthegamer463]  thought these principles were close enough for him to make quick work of the conversion.

First, the microphone was taken apart and the diaphragm module was removed, cutting the two wires that ran into the mic’s handle. A hole was then drilled into the wind screen so a 1/4″ jack could be installed. [mattthegamer463] states that it’s important to electrically isolate the jack from the wind screen or the signal and ground wires will short and the project won’t work. The two wires that were previously connected to the diaphragm module are then soldered to the newly added jack and the mic was screwed back together.

To use it, a patch cord is run from the guitar into the jack on the mic. The stock wireless receiver from the mic system is then plugged into the guitar amp. The modified ‘mic’ now transmits the guitar signals to the guitar amp! You may think it would be awkward to hold that mic while jamming. You’d be right if [mattthegamer463] didn’t come up with a nice looking aluminum and rubber belt clip.

DIY RC Hovercraft Makes Batman Action Figure Envious

[Bauwser] had some spare RC Helicopter parts laying around and cobbled together an RC Hovercraft. It worked but not to his liking. That’s okay though, he know it was just a prototype for what was to come; a fully scratch built hovercraft with parts spec’ed out specifically to make it handle the way [Bauwser] wanted.

He started out by sketching out some cool faceted shapes that would both look good and be easy to construct. Sheets of a light but rigid foam were then cut into the appropriate shapes and glued together to create a three-dimensional body. The foam was then covered with a layer of fiberglass and resin to add some strength. A hole was cut in the body to mount a 55mm ducted fan which provides the required air to fill the skirt and lift the vehicle. Another ducted fan is mounted at the back of the craft and points rearward. This ducted fan provides the forward thrust and a servo vectors this fan in order to make turns.

[Bauwser] sewed the skirt himself. It is made out of an old beach tent. The fabric is extremly light and flexible, perfect for a hovercraft. During the test runs, dirt and debris was getting trapped in the skirt tube. A quick trip back to the sewing machine to add some gauze netting fixed that problem and keeps debris collection to a minimum. In the end, [Bauwser] shows what a great DIY RC build can look like with a little planning and experimentation.

Need more DIY RC hovercrafts? Check this out

Video after the break…

Continue reading “DIY RC Hovercraft Makes Batman Action Figure Envious”

Laser Trip Wire With Keypad Arming

Most of us have had a sibling that would sneak into our room to swipe a transistor, play your guitar or just mess with your stuff in general. Now there’s a way to be immediately alerted when said sibling crosses the line, literally. [Ronnie] built a laser trip wire complete with an LCD screen and keypad for arming and disarming the system.

The brains of the project is an Arduino. There’s a keypad for inputting pass codes and an LCD screen for communicating if the entered code is correct or not. [Ronnie] wrote his own program using the keypad.h, liquidcrystal.h and password.h libraries. A small laser pointer is shined at a Light Dependent Resistor which in turn outputs an analog signal to the Arduino. When the laser beam is interrupted, the output voltage drops, the Arduino sees that voltage drop and then turns on the alarm buzzer. The value that triggers the alarm is set mid-way between the values created by normal daylight and when the laser beam is hitting the LDR. [Ronnie] made his code and wiring diagram available for anyone who’s interested in making their own laser trip wire.

Hopefully, [Ronnie’s] pesky little brother didn’t watch his YouTube video (view it after the break) to find out the secret pass code. For a laser trip wire sans keypad, check out this portable one.

Continue reading “Laser Trip Wire With Keypad Arming”