Build a Replica Apple ///

[Mr. Name Required] pointed us to a great video on the modeling of a replica Apple /// to the small scale needed to contain a Raspberry Pi by [Charles Mangin].

[Mr. Name] pointed out that the video was a great example of the use of reference photos for modeling. [Charles] starts by finding the references he needs for the model. Google image search and some Apple history websites supplied him with the required images.

He modeled the Apple /// in Autodesk 123. It has sketch tools, but he chose to craft the paths in iDraw and import them into the software. This is most likely due to the better support for boolean combination tools in vector editing software. Otherwise he’d have to spend hours messing with the trim tool.

Later in the video he shows how to change the perspective in photographs to get a more orthographic view of an object. Then it’s time for some heavy modeling. He really pushes 123 to its limit.

The model is sent off for professional 3D printing to capture all the detail. Then it’s some finishing work and his miniature Apple /// is done. Video after the break.

Continue reading “Build a Replica Apple ///”

DIY Jigsaw Table Makes Cutting Wood Even Easier

Power tools are fantastic. They make short work of whatever you throw at them, but compared to their big brothers (i.e. full size powered tools you can’t move), they’re less accurate, and difficult for precision work. Then there’s the hybrid tools — power tools you can mount in stands or bases to get better control of your work piece. Some are designed for this, some aren’t. But sometimes, making your own stand for a power tool can be pretty darn easy.

[Yonatan] needed a bandsaw for one of his projects, and not being overly confident in his jigsaw skills (the tool he did possess), he decided to upgrade it, by building a jigsaw table. Still not quite a bandsaw, but almost. Continue reading “DIY Jigsaw Table Makes Cutting Wood Even Easier”

Hacklet 108 – Simple Functional 3D Prints

We featured 3D printer projects on last week’s Hacklet. This week, we’re looking at a few awesome projects created with those printers. Trying to pick great 3D printed projects on Hackaday.io is a bit like staring at the sun. There are just way too many to choose from. To make things a bit easier, I’ve broken things down into categories. There are artistic prints, complex mechanical or electronic prints, and then there are simple functional prints, which is the topic we’re featuring today. Simple functional prints are designs which perform some function in the world. By simple, I mean they have only a few moving parts or electronic components. Let’s get right to it!

cornersWe start with [Scott] and L Extrusion Endcaps. Every Home Depot, Lowes, or hardware store has a selection of extruded aluminum. Typically there are a few flat bars, and some L brackets. L brackets are great, but they can be a pain to work with. Most of us don’t have the skills or the tools to weld aluminum, so nuts and bolts are the only way to go. [Scott’s] given us another option. He’s designed a set of 3D printable brackets that slip onto the ends of the brackets. The brackets make quick work of building boxes, racks, or anything with 90° or 45° angles.

 

earbudNext up is [Joe M] with 3D Printed Molds: Custom Silicone Earbuds. [Joe] had a set of Bluetooth earbuds he enjoyed, but the rubber tips left a bit to be desired. Not a problem when you have a 3D printer on hand. [Joe] measured the plastic part of his earbuds and the rubber tips from a different set he liked. A bit of CAD magic later, and he had a model for the perfect earbud tip. While he could have directly printed the tip in a flexible filament like NinjaFlex, [Joe] opted for a pure silicone tip. He printed molds, then mixed silicone caulk with cornstarch (as a catalyst). The resulting earbuds sound and feel great!

coil2Next we have [Jetty] with Highly Configurable 3D Printed Helmholtz Coil. Helmholtz coils are used to create uniform magnetic fields. Why would you want to do that? It could be anything from measuring magnets to cancelling out the effect of the earth’s magnetic field on a device being tested. [Jetty’s] wrote an OpenScad program which allows the user to enter parameters for their coil. [Jetty’s] program then calculates the coil’s magnetic properties, and outputs a printable .stl file. Building the coil is as simple as printing it and wrapping some copper wire. [Jetty] found that his coil was within 60nT (nanoTesla) of the expected value. Not bad for a bit of plastic and wire!

 

scope1Finally we have StickScope,  [SUF’s] entry in the 2016 Hackaday Prize. Like many of us, [SUF] loves his StickVise. Sometimes you need a bit of magnification to see those tiny 0201 resistors though. [SUF] had a cheap USB microscope on hand, so he designed StickScope, a USB microscope mount designed especially for the StickVise. Two 6mm steel rods are the backbone of the design. 3D printed clamps hold the system together like a miniature boom microscope. This is actually the third revision of the design. [SUF] found that the original design couldn’t be used with parts close to the bar which holds the microscope. A small jaw extender was the perfect tweak.

 

If you want to see more simple functional 3D printed projects, check out our new simple functional 3D prints list! If I missed your project, don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Gaming Chair gives Full Body Feeling to Collisions

A PS-3 controller has an unbalanced motor inside that vibrates your hand whenever you crash a car into a wall or drive it off a cliff and hit the rocks below but [Rulof Maker] wanted that same feeling all over his body. So he added a serious unbalanced motor to his favorite gaming chair to make his whole body vibrate instead.

To do that he opened up the controller and found the wires going to the unbalanced motor. There he added a small relay, to be activated whenever the motor was energized. Wires from that relay go to a female connector mounted in the side of the controller, keeping the controller small and lightweight.

Next he needed to attach a much bigger unbalanced motor to the underside of his favorite gaming chair. For the unbalanced mass he poured concrete powder and molten lead into a tin can mold and attached the result to the motor’s shaft. Using a piece of wood he attached the motor to the chair’s underside.

All that was left was to power the motor and turn it on when needed. For that he wired up a bigger relay, with the relay’s coil wired to a male connector to plug into the PS-3 controller. Now when the PS-3 wants to vibrate, that relay is energized. All that was left was to wire the relay’s normally open switch, the motor and a power cord in series, plug it into the wall socket, and he was ready to shake.

Continue reading “Gaming Chair gives Full Body Feeling to Collisions”

Field Expedient Bandsaw Mill Deals with Leftover Logs

When a questionable tree threatened his house, [John Heisz] did the sensible thing and called in a professional to bring it down. But with a flair for homebrew tools, [John] followed up with a seemingly non-sensible act and built a quick and dirty DIY bandsaw mill to turn the resulting pile of maple logs into usable lumber.

A proper bandsaw mill is an expensive tool. Prices start in the mid-four figures for a stripped down version and can easily head into the multiple tens of thousands for the serious mills. [John] makes it clear that his mill is purpose-built to deal with his leftover logs, and so he made no attempt at essentials like a way to index the blade vertically. His intention was to shim the logs up an inch after each cut, or trim the legs to move the blade down. He also acknowledges that the 2-HP electric motor is too anemic for the hard maple logs – you can clearly see the blade bogging down in the video below. But the important point here is that [John] was able to hack a quick tool together to deal with an issue, and in the process he learned a lot about the limitations of his design and his choice of materials. That’s not to say that wood is never the right choice for tooling – get a load of all the shop-built tools and jigs in his build videos. A wooden vise? We’d like to see the build log on that.

We’ve featured a surprising number of wooden bandsaws before, from benchtop to full size. We’re pretty sure this is the first one purpose built to mill logs that we’ve featured, although there is this chainsaw mill that looks pretty handy too.

Continue reading “Field Expedient Bandsaw Mill Deals with Leftover Logs”

BeagleBone Green, Now Wireless

Over the past few years, the BeagleBone ecosystem has grown from the original BeagleBone White, followed two years later by the BeagleBone Black. The Black was the killer board of the BeagleBone family, and for a time wasn’t available anywhere at any price. TI has been kind to the SoC used in the BeagleBone, leading to last year’s release of the BeagleBone Green, The robotics-focused BeagleBone Blue, and the very recent announcement of a BeagleBone on a chip. All these boards have about the same capabilities, targeted towards different use cases; the BeagleBone on a Chip is a single module that can be dropped into an Eagle schematic. The BeagleBone Green is meant to be the low-cost that plays nicely with Seeed Studio’s Grove connectors. They’re all variations on a theme, and until now, wireless hasn’t been a built-in option.

This weekend at Maker Faire, Seeed Studio is showing off their latest edition of the BeagleBone Green. It’s the BeagleBone Green Wireless, and includes 802.11 b/g/n, and Bluetooth 4.1 LE.

Continue reading “BeagleBone Green, Now Wireless”

PTC Heaters For Reflow Soldering

Reflow soldering – setting components on a PCB in blobs of solder paste and heating the whole assembly at once to melt all joints simultaneously – has been the subject of many ingenious hacks. Once it was the sole preserve of industrial users with specialist microprocessor-controlled ovens, now there are a myriad Arduino-controlled toaster ovens, hot air blowers, and hotplates that allow hackers and makers to get in on the reflow act too.

This morning a fresh idea in the reflow soldering arena has come our way. It’s not the most earth-shattering, but it does have some advantages so is worth a second look. [Analog Two] has successfully used a PTC heating element as a reflow soldering hotplate.

PTC heating elements are thermistors with a positive temperature coefficient. As their temperature rises, so does their electrical resistance. By careful selection of materials they can be manufactured with a sharp increase in resistance at a particular temperature. Thus when an electrical current is passed through them they heat up until they reach that temperature, then the current decreases as the resistance goes up, and they do not heat beyond that point. Thus as heaters they are intrinsically self-regulating. From our point of view they have another advantage, they are also cheap. Fitted as they are to thousands of domestic heating products they are readily available, indeed [Analog Two] found his on Amazon.

The heater chosen was a 200W 110V model with a temperature of 230 Celcius to match the solder he was using. They are also available for other mains voltages, and even at 12 and 24V for automotive applications. He reports that the time to reflow was about 90 seconds.

We’ve mentioned the advantages of this heater as its price and regulated temperature. Looking at the pictures though a disadvantage is its size. This is a reflow plate for small boards. There are larger PTC heater elements available though, it would be interesting to hear people’s experiences reflowing with them.

Hotplates for reflow soldering have featured before a few times here at Hackaday. We recently had this tiny plate, but we’ve also had a PID-controlled plate, and an Arduino-controlled domestic hotplate. We’re sure this is an avenue with further to go.