PolaPi-Zero For Surprisingly Good Instant Photos

The ‘Pola’ in the PolaPi is a giveaway for what this Hackaday.io project is. This polaroid-like camera, created by [Muth], is a sort of black and white, blast from the past mixed with modern 3D printing. It is based on a Raspberry-pi Zero with a camera module, a Sharp memory LCD for viewing the image, and a Nano thermal printer to print the actual photo. Throw in some buttons, a battery and a slick 3D printed case and you have your own PolaPi.

polapi-frontRight now it’s already on the second iteration as [Muth]s gave the first prototype to some lucky person. As he had to rebuild the whole camera from scratch, he took advantage of what he learned in the first prototype and improved on it. The camera has a ‘live’ 20fps rate on the LCD and you can take your photo, review it, and if you like the shot, print it. The printed photo is surprisingly good, check it out in the video after the break.

Currently the software is being actively developed and the latest version has, among other things, a slit-scan mode. For those who don’t know, slit-scan photography is a technique that can create some crazy warped and psychedelic effects (in this case, as psychedelic as a black and white photo can be).

We know you want one for yourself. If you don’t want to spend the time installing and configuring your RPi Zero, [Muth] kindly shared an SD card image with everything ready.

Continue reading “PolaPi-Zero For Surprisingly Good Instant Photos”

Genetically Engineered Muscle Cells Power Tiny Bio-Robots

One of the essential problems of bio-robotics is actuators. The rotors, bearings, and electrical elements of the stepper motors and other electromechanical drives we generally turn to for robotics projects are not really happy in living systems. But building actuators the way nature does it — from muscle tissue — opens up a host of applications. That’s where this complete how-to guide on building and controlling muscle-powered machines comes in.

Coming out of the [Rashid Bashir] lab at the University of Illinois at Urbana-Campaign, the underlying principles are simple, which of course is the key to their power. The technique involves growing rings of muscle tissue in culture using 3D-printed hydrogel as forms. The grown muscle rings are fitted on another 3D-printed structure, this one a skeleton with stiff legs on a flexible backbone. Stretched over the legs like rubber bands, the muscle rings can be made to contract and move the little bots around.

Previous incarnations of this technique relied on cultured rat heart muscle cells, which contract rhythmically of their own accord. That yielded motion but lacked control, so for this go-around, [Bashir] et al used skeletal muscle cells genetically engineered to contract when exposed to light. Illuminating different parts of the muscle ring lets the researchers move the bio-bots anywhere they want. They can also use electric stimulation to control the bio-bots.

The method isn’t quite at the point where home lab biohackers will start churning out armies of bio-bots. But the paper is remarkably detailed in methods and materials, from the CAD files for 3D-printing the forms and bio-bot skeletons to a complete troubleshooting guide. It’s all there, and it could be a game changer for developing the robotic surgeons of the future.

Continue reading “Genetically Engineered Muscle Cells Power Tiny Bio-Robots”

40-Acre HAARP Rides Again, And They Want You To Listen

News comes to us this week that the famous HAARP antenna array is to be brought back into service for experiments by the University of Alaska. Built in the 1990s for the US Air Force’s High Frequency Active Auroral Research Program, the array is a 40-acre site containing a phased array of 180 HF antennas and their associated high power transmitters. Its purpose it to  conduct research on charged particles in the upper atmosphere, but that hasn’t stopped an array of bizarre conspiracy theories being built around its existence.

The Air Force gave up the site to the university a few years ago, and it is their work that is about to recommence. They will be looking at the effects of charged particles on satellite-to-ground communications, as well as over-the-horizon communications and visible observations of the resulting airglow. If you live in Alaska you may be able to see the experiments in your skies, but residents elsewhere should be able to follow them with an HF radio. It’s even reported that they are seeking reports from SWLs (Short Wave Listeners). Frequencies and times will be announced on the @UAFGI Twitter account. Perhaps canny radio amateurs will join in the fun, after all it’s not often that the exact time and place of an aurora is known in advance.

Tinfoil hat wearers will no doubt have many entertaining things to say about this event, but for the rest of us it’s an opportunity for a grandstand seat on some cutting-edge atmospheric research. We’ve reported in the past on another piece of upper atmosphere research, a plan to seed it with plasma from cubesats, and for those of you that follow our Retrotechtacular series we’ve also featured a vintage look at over-the-horizon radar.

HAARP antenna array picture: Michael Kleiman, US Air Force [Public domain], via Wikimedia Commons.

Monitor All the Laundry Things with this Sleek IoT System

If like us you live in mortal fear of someone breaking into your house when you’re on vacation and starting a dryer fire while doing laundry, this full-featured IoT laundry room monitor is for you. And there’s a school bus. But don’t ask about the school bus.

In what [seasider1960] describes as “a classic case of scope creep,” there’s very little about laundry room goings on that escapes the notice of this nicely executed project. It started as a water sensor to prevent a repeat of a leak that resulted in some downstairs damage. But once you get going, why not go too far? [seasider1960] added current sensing to know when the washer and dryer are operating, as well as to tote up power usage. A temperature sensor watches the dryer vent and warns against the potential for the aforementioned tragedy by sounding an obnoxious local alarm — that’s where the school bus comes in. The whole system is also linked into Blynk for IoT monitoring, with an equally obnoxious alarm you can hear in the video below. Oh, and there are buttons for testing each alarm and for making an Internet note to reorder laundry supplies.

We’ve seen a spate of laundry monitoring projects lately, all of which have their relative merits. But you’ve got to like the fit and finish of [seasider1960]’s build. The stainless face plate and in-wall mount makes for a sleek, professional appearance which is fitting with the scope-creepy nature of the build.

Continue reading “Monitor All the Laundry Things with this Sleek IoT System”

World’s Thinnest Morse Code Touch Paddle

Morse code enthusiasts can be picky about their paddles. After all, they are the interface between the man and the machine, and experienced telegraphers can recognize each other by their “hands”. So even though [Edgar] started out on a cheap, clicky paddle, it wouldn’t be long before he made a better one of his own. And in the process, he also made what we think is probably the thinnest paddle out there, being a single sheet of FR4 PCB material and a button cell battery. This would be perfect for a pocketable QRP (low-power) rig. Check it out in action in the video below.

There’s not much to a Morse code paddle. It could, of course, be as simple as two switches — one for “dit” and one for “dah”. You could make one out of a paperclip. [Edgar]’s version replaces the switches with capacitive sensing, done by the ATtiny4 on board. Because this was an entry in the 1kB challenge, he prioritized code size over features, and got it down to a ridiculous 126 bytes! Even so, it has deluxe features like autorepeat. We’d have to dig into the code to see if it’s iambic.
Continue reading “World’s Thinnest Morse Code Touch Paddle”

Relay Computer Starts with an Adder that Makes a Racket

Computers built using discrete logic chips? Seen it. Computers from individual transistors? Impressive, but it’s been done. A computer built out of electromechanical relays? Bring on the ozone!

The aptly named [Clickity Clack]’s new YouTube channel promises to be very interesting if he can actually pull off a working computer using nothing but relays. But even if he doesn’t get beyond the three videos in the playlist already, the channel is definitely worth checking out. We’ve never seen a simpler, clearer explanation of binary logic, and [Clickity Clack]’s relay version of the basic logic gates is a great introduction to the concepts.

Using custom PCBs hosting banks of DPDT relays, he progresses from the basic AND and XOR gates to half adders and full adders, explaining how carry in and carry out works. Everything is modular, so four of his 4-bit adder cards eventually get together to form a 16-bit adder, which we assume will be used to build out a very noisy yet entertaining ALU. We’re looking forward to that and relay implementations of the flip-flops and other elements he’ll need for a full computer.

And pay no mind to our earlier dismissal of non-traditional computer projects. It’s worth checking out this discrete 7400 logic computer and this all-transistor build. They’re impressive too in their own way, if a bit quieter than [Clickety Clack]’s project.

Continue reading “Relay Computer Starts with an Adder that Makes a Racket”

Neural Network Does Your Homework

[Will Forfang] found a app that lets you take a picture of a math equation with a phone and ask for a solution. However, the app wouldn’t read handwritten equations, so [Will] decided to see how hard that would be, using a neural network.

The results are pretty impressive (you can also see the video below). [Will] used his own handwriting on a chalkboard and had the network train on that. He also went even further and added some heuristics to identify fraction bars and infer the grouping from the relative size of the bars.

Continue reading “Neural Network Does Your Homework”