Ultrasonic Misting Vapor Polisher for 3D Printed Parts

If you’ve ever seen 3D printed parts form an extrusion type printer, one of the first things you’ll notice is the texture. It’s caused by the printer laying down its plastic layer after layer. This surface texture isn’t always desirable, so people have found a few ways to smooth the 3D printed part out. For example if you are using ABS, you can rinse or “paint” the part with acetone. Another method of smoothing is heat up some acetone in a container, and let the acetone vapors do work to smooth the finished part.

[Mike] from engineerdog.com thinks he may have found a more elegant solution using an inexpensive ultrasonic humidifier you can buy online for about $40 USD. This room humidifier uses a piezoelectric transducer that can vibrate liquids at a high frequency to produce a mist. [Mike] removed the transducer and electronics from the humidifier and mounted it into a paint can.  This is where the acetone is stored, and turned into a vapor by the transducer. An aquarium pump is used to transfer the highly concentrated vapors into the polishing chamber (an extra large pickle jar.) He added a spring loaded, electrical timer (the kind you might find in the bathroom at an office building) to make his vapor polisher as easy to use as a microwave oven.

[Mike] concludes his post with some strength testing of parts before and after acetone treatment, and was surprised to find that the parts were weaker after the treatment.  You can read more about that on his blog and see a video of the vapor polisher after the break.

Continue reading “Ultrasonic Misting Vapor Polisher for 3D Printed Parts”

3D Printing an Arcade Controller

A keyboard and mouse simply can’t stand in for games originally meant to be played with a joystick and buttons. We are of course thinking of coin-op here and building your own set of arcade controls is a great project to give back some of the thrill of those classics. But these are not trivial builds and may push your comfort zone when it comes to fabrication. Here’s one alternative to consider: 3D printing an arcade controller housing.

3d-printed-arcade-controller-thumb[Florian] already had experience building these using laser cut acrylic and MDF. This is his first foray into a 3D printing build method for the controller body. The top is too large to easily produce as a single piece on inexpensive printers. He broke it up into sections; eleven in total. When the printing is complete he chemically welds them together using a slurry of acetone and leftover ABS.

We think one possible extension of this technique would be to build a mounting system that would allow you to swap out segments (instead of welding them all) while you dial in the exact placement that you want for each component. You know, like when you decide that rectangular button pattern doesn’t fit your hand. That said, this looks like a beautiful and functional build. At the least it’s a great way to practice your 3D printing skills and you end up with a wicked controller at the end of it.

Hackaday Links: April 26, 2015

In case you haven’t heard, we’re giving away a trip to space. We have $50,000 to promote giving away a trip to space too, and this week we’re giving away some OSH Park gift cards. If you have a project that’s held together with hot glue on a 40-year-old piece of perf board, add a project log describing how you need some free PCBs.

A few months ago, some guy in Texas found the original molds for the Commodore 64C, the Plus/4 and the 128. That discovery turned into one of the best examples of what Kickstarter can do. Now, new keycaps are being manufactured with an Indiegogo campaign. If you’re waiting on your C64c case to be pressed out of a mold, this is not the time to think about the sunk cost fallacy. They’re not Cherry MX compatible, but they will work with just about every version of the C64. Not bad for under €20.

The UK has a fabulously rich history of ancient melee weapons, ranging from the flail to the mace and a bunch of odd bladed weapons used by the Scots. This tradition was passed down to the UK mains plug, the single most painful plug to step on. Apple just released a USB charger with a folding UK mains plug and [oliver] did a teardown on it.

For St. George’s Day in Catalonia, there’s a tradition of giving roses to women, and books to men. [Nixieguy] has all the books he could want, and would prefer to receive a rose. Bucking tradition, he made himself a rose from a punch card. It’s the closest he’s going to get to ‘@}-\—’. A few years ago, he carved a rose out of a 10mm LED.

Finally, a decent tutorial on how to grow your own SMD components.

Need to take apart a cellphone? Use acetone! Need the phone to work after you take it apart? Ummmm….

The Dayton Hamvention is just three weeks away! Yes, the same weekend as the Bay Area Maker’s Faire, which means most of the Hackaday crew will be elsewhere, but I hear [Chris Gammell] will be there putting Parts.io stickers on everything. By the way, I’m looking for a Tek PM203 Personality Module for a 68000 64-pin PDIP.

Electric Longboard has a Flexy Battery Pack Design

DIY electric longboards are a ton of fun to build and ride (we’ve featured several builds before). Most boards have batteries strapped to the bottom of a rigid board, or they have battery packs near each truck so the board can still flex. Instead of going with either of these designs, [Ben] created a custom battery pack design that’s able to flex with the board.

[Ben]’s pack is made up of A123 26650 cells nestled in his custom-fabricated enclosure. [Ben] designed his pack in CAD and used a CNC machine to create a foam mold. He used the mold to do a fiberglass layup, vacuum-bagged it, and left it to cure. Since the fiberglass bonded really well to the foam, [Ben] used acetone to dissolve the foam while leaving his fiberglass layup intact.

Bendy battery pack on longboard[Ben]’s pack fits 18 cells which he soldered together with some flexible copper grounding wire. The top side of the enclosure is covered with a layer of insulating rubber, and the rim is covered with a soft foam to form a gasket against the board. As you can see, the pack bends really well with the board, and  it doesn’t look like [Ben] has had any issues with his design so far. Check out [Ben]’s blog for more info and for more details on the overall design of his board.

Walk Like A Xenomorph

[James Bruton] is busy working on his latest project, a “scrap metal sculpture”-inspired Alien Xenomorph suit.  However, he wanted to get a boost in height as well as a digitigrade stance. To that end, [James] 3D-printed a pair of customized stilts. Each stilt consisted of a lifter with several parts laminated together using acetone. He bolted an old pair of shoes onto the stilts, adding straps across the toes to keep the shoes from lifting up.

While the stilts worked very well, [James] wanted to add soles to them to give him some traction as he walked – falling while in a Xenomorph costume composed of sharp plastic sounds painful enough! He decided to hybrid print the soles using ABS and Ninjaflex. The ABS part of the sole was then acetone-welded to the bottom of the stilts.

[James] hopes to add some claws for effect, so long as they don’t impede his walking too much. He has already completed a good amount of the 3D-printed suit. We know the finished project is going to be amazing: [James] has created everything from Daleks to Iron Man!

Continue reading “Walk Like A Xenomorph”

Electroplating Copper and Silver onto 3D Prints

While researching copper plating graphite for a project, [Dave] stumbled upon a blog post illustrating a brilliant approach to metal plating 3D printed parts.

Our pioneers in this new technique are [Aaron], who runs a jewelry business, and [Bryan], a professor of Digital Media. By mixing graphite powder into an acetone solution, it is possible to make a kind of graphite paint that sticks extremely well to ABS plastic.

Using the graphite painted part as the cathode, and a chunk of copper as the anode, it becomes possible to electroplate the part with a variety of electro-forming solutions. In the first test (seen above), [Bryan] uses a Midas Bright Electro-forming Copper Solution (copper sulfate solution).

Continue reading “Electroplating Copper and Silver onto 3D Prints”

One Way To Get Rid of That Fluorescent Buzzing Sound

Tired of the persistent hum his fluorescent desk lamp made, [Andres Lorvi] decided he had to fix it. And by fix, we mean get rid of altogether. He liked the lamp though so he decided to convert it to LED — that way he’d save some money on electricity too!

Besides wanting to get rid of the hum, [Andres] had also been reading up on the effect of light temperature at night — bluish light is typically bad for your eyes when you’re trying to go to sleep. So he also took this opportunity to change the color temperature of the light in his room. Unfortunately it wasn’t as simple as just replacing the fluorescent with the LEDs — no, that would be far too easy…

Continue reading “One Way To Get Rid of That Fluorescent Buzzing Sound”