A Bold Experiment In A Decentralised Low Voltage Local DC Power Grid

January, for many of us in the Northern Hemisphere, can be a depressing month. It’s cold or wet depending where you live, the days are still a bit short, and the summer still seems an awfully long way away. You console yourself by booking a ticket to a hacker camp, but the seven months or so you’ll have to wait seems interminable.

If you want an interesting project to look forward to, take a look at [Benadski]’s idea for a decentralised low voltage local DC power grid for the upcoming SHA 2017 hacker camp in the Netherlands. The idea is to create a network that is both safe and open for hacking, allowing those with an interest in personal power generation to both have an available low-voltage power source and share their surplus power with other attendees.

The voltage is quoted as being 42V DC +/- 15%, which keeps it safely under the 50V limit set by the European Low Voltage Directive. Individuals can request a single 4A connection to the system, and villages can have a pair of 16A connections, which should supply enough for most needs. Users will need to provide their own inverters to connect their 5V or 12V appliances, fortunately a market served by numerous modules from your favourite Far Eastern sales portal.

This project will never be the solution to all power distribution needs, but to be fair that is probably not the intention. It does however provide a platform for experimentation, collaboration, and data gathering for those interested in the field, and since it is intended to make an appearance at future hacker camps there should be the opportunity for all that built up expertise to make it better over time.

We’ve touched on this subject before here at Hackaday, with our look at the availability of standard low voltage DC domestic connectors.

Wind turbine image: Glogger (CC BY-SA 3.0) via Wikimedia Commons.

CES2017: Astrophotography In The Eyepiece

If you’ve never set up a telescope in your back yard, you’ve never been truly disappointed. The Hubble can take some great shots of Saturn, nebulae, and other astronomical phenomena, but even an expensive backyard scope produces only smudges. To do astronomy properly, you’ll spend your time huddled over a camera and a computer, stacking images to produce something that almost lives up to your expectations.

At CES, Unistellar introduced a device designed to fit over the eyepiece of a telescope to do all of this for you.

According to the guys at Unistellar, this box contains a small Linux computer, camera, GPS, and an LCD. Once the telescope is set up, the module takes a few pictures of the telescope’s field of view, stacks the images, and overlays the result in the eyepiece. Think of this as ‘live’ astrophotography.

In addition to making Jupiter look less like a Great Red Smudge, the Unistellar module adds augmented reality; it knows where the telescope is pointing and will add a label if you’re looking at any astronomical objects of note.

While I wasn’t able to take a look inside this extremely cool device, the Unistellar guys said they’ll be launching a crowdfunding campaign in the near future.

Hackaday Links: December 25th, 2016

You should be watching the Doctor Who Christmas special right now. Does anyone know when the Resturant at the End of the Universe spinoff is airing?

We have a contest going on right now. It’s the 1 kB Challenge, a contest that challenges you to do the most with a kilobyte of machine code. The deadline is January 5th, so get cracking.

A few years ago, [Kwabena] created the OpenMV, a Python-powered machine vision module that doesn’t require a separate computer. It’s awesome, and we’re going to have his talk from the Hackaday SuperConference up shortly. Now the OpenMV is getting an upgrade. The upgrades include an ARM Cortex M7, more RAM, more heap for less money. Here’s a link to preorder.

There ain’t no demoscene party like an Amtrak demoscene party because an Amtrak demoscene party lasts ten hours.

E-paper displays are fancy, cool, and low-power. Putting them in a project, however, is difficult. You need to acquire these display modules, and this has usually been a pain. Now Eink has a web shop where you can peruse and purchase epaper display modules and drivers.

[Kris] built a pair of STM32L4 dev boards that are easily programmed in the Arduino IDE. Now he’s putting these boards up on Kickstarter. The prices are reasonable – $15 for the smaller of the pair, and $25 for the bigger one. Remember, kids: ARM is the future, at least until RISC-V takes over.

This is how you do holiday greeting cards.

Didn’t get what you want for Christmas?  Don’t worry, Amazon still has A Million Random Digits with 100,000 Normal Deviates in stock. It’s also available on audible dot com. Sometimes we don’t have time to sit down and read a million random digits but with audible dot com, you can listen to a million random digits in audio book format. That’s audible dot com please give us money.

northkoreaThis is the last Hackaday Links post of the year, which means it’s time for one of our most cherished traditions: reviewing our readership in North Korea.

It’s been a banner year for Hackaday in the Democratic People’s Republic of North Korea. The readership has exploded in 2016, with a gain of nearly 300%. To put that in perspective, in 2015 we had thirty-six views from North Korea across every page on Hackaday. In 2016, that number increased to one hundred and forty.

That’s a phenomenal increase and a yearly growth that is unheard of in the publishing industry. We’d like to tip our hat to all our North Korean reader, and we’re looking forward to serving you in 2017.

Hackaday Links: December 18, 2016

You can fly a brick if it has offset mass and you can fly a microwave because it breaks the law of the conservation of momentum. A paper on the EM Drive was recently published by the Eagleworks team, and the results basically say, ‘if this works, it’s a terrible thruster that shouldn’t work’. Experts have weighed in, but now we might not have to wait for another test in the Eagleworks lab: China will fly an EM Drive on their space station. Will it work? Who knows.

The ESP32 is just now landing on workbenches around the globe, and already a few people are diving into promiscuous mode and WiFi packet injection.

The Large Hadron Collider is the most advanced piece of scientific apparatus ever built. It produces tons of data, and classifying this data is a challenge. The best pattern recognition unit is between your ears, so CERN is crowdsourcing the categorization of LHC data.

Holy crap this is cyberpunk. [SexyCyborg] created a makeup palette pen testing device thing out of a Rasberry Pi and a few bits and bobs sitting around in a parts drawer. The project is cool, but the photolog of the finished project is awesome. It’s exactly what you would use to break into the Weyland-Yutani database while evading government operatives on the rooftops of Kowloon Walled City before escaping via grappling hook shot into the belly of a spaceplane taking off.

The Mini NES is Nintendo’s most successful hardware offering since the N64. This tiny device, importantly packaged in a minified retro NES enclosure, is out of stock everywhere. That doesn’t matter because now there’s a mini Genesis. The cool kids had a Genesis. You want to be a cool kid, right? Mortal Kombat was better on the Genesis.

The Arduino (what once was two is again one) launched a new vowel-hating model: MKRZero. The narrow board is powered by USB or LiPo, centers around an Atmel SAMD21 Cortex-M0+ chip, and sports both an I2C breakout header and a microSD card slot. Just watch those levels as these pins are not 5v tolerant.

The American Association for the Advancement of Science is holding a Scientific Maker Exhibit during its annual meeting. This type of exhibit isn’t a poster or presentation — it’s just some table space and a chance to show off a 3D printed apparatus, a new type of sensor, equipment, or some other physical thing. Details in this PDF. This is actually cooler than it sounds, and a significant departure from the traditional poster or presentation found at every other scientific conference.

Did you know Hackaday has a retro edition made specifically for old computers connected to the Internet? That’s my baby, and it’s time for a refresh. If you have any feature requests you’d like to see, leave a note in the comments.

Hackaday Links: December 11, 2016

We have a contest going on right now challenging you to do the most with 1 kB of data. If you want to get into this, here’s how you do it for a dollar. Use the PIC12C508A. It’s an 8-pin DIP, has 768 bytes of program ROM and 25 bytes of data RAM. [Shaos] is trying to generate NTSC on this thing.

Remember that Internet of Cookie Oven Kickstarter from the links post a few weeks ago? It was funded. It has a heating element that is ‘more energy efficient than traditional electric elements’, and there’s still no consensus over how a resistive heating element can be more efficient. It’s either 100% efficient, or 0% efficient, depending on how you look at it.

[Matthias Wandell], master of wood gears recently built a 20″ bandsaw from scratch. It’s a wood frame, wood wheels, a (currently) underpowered motor, and a few bits of metal and rubber. The video build log is fantastic, so start here and work your way forward.

Way back in the day, Sparkfun sold a Bluetooth rotary phone. Yes, at some point in the past, phones didn’t have touchscreens or even buttons. In any event, Sparkfun hasn’t sold these phones for quite a long time. Now there’s a new hotness: giving these rotary phones a GSM module.

Here’s a little Hackaday Events housekeeping. On January 23rd, we’re going to have a meetup in NYC. We’ll also have a meetup in LA sometime in January as well. Also in January I’ll be attending CES, reporting on the latest Internet of Toasters. A week later, Hackaday will be at ShmooCon in Washington, DC. At ShmooCon last year, we had a breakfast meetup in the DC Hilton. This year, I want to do something similar. If you have an idea of what to do, leave a note in the comments.

Hackaday Links: December 4, 2016

The Chaos Communication Congress is growing! Actually, it’s not, but there may be an ‘overflow venue’ for everyone who didn’t get a ticket. There’s a slack up for people who didn’t get a ticket to 33C3 but would still like to rent a venue, set up some tables, stream some videos, and generally have a good time.

Need to test a lot of batteries? Have one of those magnetic parts tray/dish things sitting around? This is freakin’ brilliant. Put your batteries vertically in a metal dish, clip one lead of a meter to the dish and probe each battery with the other lead of your meter.

Pravda reports the USS Zumwalt and HMS Duncan – the most technologically advanced ships in the US and Royal Navies – have turned into, ‘useless tin cans due to China’, with ‘Microchips made in China putting the vessels out of action’. Again, Pravda reports this, so don’t worry. In other news, someone found a few USB drives in a parking lot in Norfolk, Virginia.

Here’s how discourse goes on the Internet. Someone does something. Everyone says it’s stupid. We wait a few days or weeks. Someone posts something on Medium telling everyone it’s actually okay. Public opinion is muddled until the actual issue being discussed is rendered technologically irrelevant. For the newest MacBook Pro, we’re currently at stage 3 and ‘it’s kind of great for hackers’. Now if only we knew how to make USB-C ports work with microcontrollers…

If you have a Prusa i3, here’s a free gift: a Spitfire. The files to print a remote control, 973mm Spitfire Mk XVI are now free for Prusa i3 and i3 Mk 2 owners. Why? Because it’s cool, duh, and [Stephan Dokupil] and [Patrik Svida], the guys behind the Spitfire and other 3D printed RC planes, are also in Czech. Now all we need are Czech roundel stickers.

Hollow State Receiver

[Netzener] received a Radio Shack P-Box one tube receiver as a gift. However, at the time, his construction skills were not up to the task and he never completed the project. Years later, he did complete a version of it with a few modern parts substitutions. The radio worked, but he was disappointed in its performance. Turns out, the original Radio Shack kit didn’t work so well, either. So [Netzener] did a redesign using some some old books from the 1920’s. The resulting radio–using parts you can easily buy today–works much better than the original design.

The most expensive part of the build was a 22.5V battery, which cost about $25. However, you can get away with using three 9V batteries in series if you want to save some money. The battery provides the plate voltage for the 1T4 vacuum tube. A more conventional AA battery drives the tube’s filament. Continue reading “Hollow State Receiver”