DIY Illuminator for UV Fluorescence Photography

The image shown is the mineral Hackmanite, which fluoresces under ultraviolet lighting. However, not all UV is created equal, and that makes a difference if you’re into UV imaging. The image for this article is from [David Prutchi] and shows the striking results of using different wavelengths of UV. [David] goes into detail on how to make your own DIY Long, Medium, and Short-wave UV Illuminator complete with part numbers and wiring diagram. The device isn’t particularly complicated; the real work was determining the exact part numbers and models of lamp, filters, and ballasts required to get the correct results. [David] has done that work and shared it for anyone interested in serious UV fluorescence photography, along with a white paper on the process.

We’ve seen [David]’s work before. We featured his DIY short-wave UV imager in the past, and his DOLPi camera project was a 2015 Hackaday Prize finalist. It’s clear he really knows his stuff, and genuinely enjoys sharing his discoveries and work.

The Perfect Tourist Techno-Cap

How many times are you out on vacation and neglect to take pictures to document it all for the folks back at home? Or maybe you forgot just exactly where that awesome waterfall was. [Mark Williams] has made a Raspberry Pi Zero enabled cap that can take photos and geotag them with the location as well as the attitude of the camera.

The idea is to enable the reconstruction of a trip photographically. The hardware consists of a Raspberry Pi Zero W coupled with a Raspberry Camera V2 and a BerryGPS-IMU. Once activated, the system starts taking photos every two minutes. Within each photograph, the location of the photographer is recorded like most GPS enabled camera.

An additional set of data including yaw, pitch, and roll along with direction is also captured to understand where the camera is pointing when the image was taken. Even if he’s tilting his head at the time the photo was taken, the metadata allows it to be straightened out in software later.

This information is decoded using GeoSetter which puts the images on a map along with the field of view. Take a peek at the video below for the result of a trip around Sydney Harbour and the system in action. The Raspberry Pi Zero and camera combo are useful for a lot of things including this soldering microscope. Hopefully, we will be seeing some DIY VR gear with stereo cameras in the near future. Continue reading “The Perfect Tourist Techno-Cap”

Hackaday Prize Entry: Don’t Build This

The ESP8266 is a remarkable piece of hardware. What we originally thought — and what was originally marketed as — a simple UART to WiFi bridge with Hayes modem commands has turned into one of the best embedded platforms around. It’s a powerful little microcontroller, it has WiFi, and it can send raw frames. That last bit is awesome, because it allows for some mischief or mirth making, depending on your point of view.

For his Hackaday Prize entry, [Tejas] is building a WiFi Jammer with an ESP8266. It’s a small device that is able to disconnect anyone from a WiFi AP. Should you build it? No. Can you? Sure, why not.

The code for this WiFi hacking tool is taken from the creator of the ESP8266 deauth toolkit, [spacehuhn], although [Tejas] is violating the license for [spacehuhn]’s (non-Open Source) code. This fantastic piece of firmware uses management packets to send a deauthentication frame, effectively allowing anyone to disconnect any device from a WiFi router. Why would anyone want to do this? Mischief, of course, but there are also a few techniques that could allow an attacker to get a password for the WiFi.

While there are ways to protect against deauth attacks, most routers don’t have management-frame protection enabled. In any event, we’re going to see exactly how annoying deauth attacks can be this week at DEF CON. The smart money is on a small percentage of DEF CON attendees lulzing about with ESPs and the Caesar’s CTO being very, very unhappy.

Monster Mindstorms Delta Bot Delicately Picks Candy

A group of embedded developers from Sioux Embedded Systems in Eindhoven, the Netherlands, wanted to get experience working on Microsoft .Net. To make it fun they made it their project to produce a LEGO train with visitors at LEGO World, the official LEGO convention in the Netherlands. The team developed an application in C# to fully automate the train, with Mindstorms NXT and EV3 bricks as well as LEGO Power Functions motors controlling everything.

The train project carries a simple premise: the visitor chooses one of four colors, and the train goes and picks up a piece of simulated candy with the matching color. Called Sioux.net on Track, the project has produced a new train every year since 2012 with improvement goals in place to add features with every version. Ironically, the least interesting part of the setup is the actual train and track. The team’s creativity comes to the fore in two areas of the project: the method by which the candy color is selected, and the assembly that dispenses the correct color into the train car.

Team member [Hans Odenthal] has built candy-grabbers for various years’ trains. He learned about the ABB FlexPicker and this year decided to build a delta robot for the layout. It consists of huge girders constructed from 5×9 and 5×11 Technic beam frames held together with more Technic beams and hundreds of connector pegs. The three arms each move on a pair of turntables which are geared down to provide as much torque as possible — the fake candy pieces are light, but the arms themselves weigh a lot. [Hans] ended up revamping the gearboxes to up the ratio from 1:5 to 1:25.

Continue reading “Monster Mindstorms Delta Bot Delicately Picks Candy”

Hackaday’s Assistive Technology Challenge Begins Now

This morning marks a new challenge in the Hackaday Prize: we want to see what you can do with Assistive Technology. Twenty entries will win $1000 each, becoming part of the final round for a chance at the top prizes ranging from $5,000 to $50,000.

Assistive Technology means things that help people by improving their quality of life. This can take so many forms but broadly speaking this could make aging easier, turn disabilities into abilities, or enhance the access and delivery of health care.

We’ve seen great things in this area from the Hackaday community. The Grand Prize for the 2015 Hackaday Prize went to an assistive technology that linked motorized wheelchairs to gaze-controlled computers, called Eyedrivomatic. And at the 2016 Hackaday SuperConference we learned how common tools and crowd sourced skills can lead to a new take on physical rehabilitation with a robot-assisted elbow.

The Hackaday Prize challenges us all to Build Something that Matters. It’s hard to argue that there is a better place to take on this challenge than with Assistive Technologies. Enter your project today!

Simple Shop-made Taps for Threading Wood

Wood can be the material of choice for many kinds of projects, but it often falls out of the running in favor of metal or plastic if it needs to take a threaded fastener. But with a little ingenuity you can make your own wood taps and cut threads that will perform great.

Making wood do things that wood isn’t supposed to do is [Matthias Wandel]’s thing. Hackers the world over know and use his wood gears designer to lay out gears for all kinds of projects from musical marble machines to a wooden Antikythera mechanism. Woodworkers have been threading wood for centuries , so making wood take a decent thread isn’t exactly something new. But doing it on the cheap and making the threads clean and solid has always been tricky. The video after the break shows [Matthias]’ method of cutting a tap out of an ordinary threaded rod or even off-the-shelf lag screws. He uses a simple jig to hold the blank so that flutes can be cut with an angle grinder. The taps work well in the materials he tested, and a little informal stress testing at the end of the video shows promise for long service life of the threads.

Wood threads aren’t suitable for every project, but knowing that you can do it might just open the path to a quick, easy build. This is a great tip to keep in mind.

Continue reading “Simple Shop-made Taps for Threading Wood”

Review: TS100 Soldering Iron

Temperature-controlled soldering irons can be cheap, lightweight, and good. Pick any two of those attributes when you choose an iron, because you’ll never have all three. You might believe that this adage represents a cast-iron rule, no iron could possibly combine all three to make a lightweight high-performance tool that won’t break the bank! And until fairly recently you’d have had a point, but perhaps there is now a contender that could achieve that impossible feat.

The Miniware TS100 is a relatively inexpensive temperature-controlled soldering iron from China that has made a stealthy entry to the market, and which some online commentators claim to be the equal of far more expensive professional-grade irons. We parted with just below £50 (around $60) to place an order for a TS100, and waited for it to arrive so we could see what all the fuss was about.

Constituent parts of a TS100 iron.
Constituent parts of a TS100 iron.

The Goods

The iron arrived well-packaged in a smart cardboard container that was well up to the task of protecting it through international air mail. Nestled in foam were the iron handle, a single combined element and bit, and an envelope containing a short instruction leaflet and a click-seal bag with an Allen key and a spare screw to secure the bit. There was no power supply, you supply your own 12 to 24 V DC to power it.

The handle is a plastic wand containing the temperature control electronics about 100 mm (4″) long, and similar in girth to a chunky fountain pen. At its rear is a barrel socket for the DC supply alongside a micro-USB socket for firmware and configuration, on its top are a small OLED display and a couple of buttons, and at its front is a receptacle for the element unit. Meanwhile the element unit is about 105 mm (3.15″) long, with an exposed length to the end of the bit of about 70 mm (2.75″).

The assembled TS100 iron
The assembled TS100 iron

Assembling the iron is simple enough, the element slots into the receptacle and an Allen screw is tightened to hold it in place. The whole assembled unit weighs 30 g, or a shade over an ounce, and has a balance point almost at its centre.

We hadn’t ordered a power supply with our TS100, but you will doubtless be able to buy one if you don’t have one of the right power level and polarity to hand. We used a 19.5 V netbook supply which was far more than capable of delivering the 40 W the instruction leaflet claims for the iron at 19 V. Maximum power is given as 65 W when supplied with 24 V, while minimum is 17 W with 12 V.

In the hand, the iron is light and easy on the fingers. On its own it is similar in weight and feel to holding a fountain pen, and it is easy to see where comparisons with more expensive irons from the likes of Weller come from. However the iron itself is not the whole story, because your choice of power supply and in particular its lead will make a huge difference to how it feels in practice. The Weller will come fitted with an extra-flexible silicone lead probably designed to work at higher temperatures, by comparison the lead on a cheap power supply is likely to be a stiffer and cheaper affair. Our netbook supply had a right-angled plug, and though it wasn’t a nice flexible silicone cable it turned out not to be a significant burden once it was ensured to be out of range of the hot end.

The TS100 ready to use
The TS100 ready to use

Heating up, the TS100 may not be as quick as some irons, but it’s no slouch. It’s quoted as 15 seconds to 300 Celsius at 19 volts in its instruction leaflet, and our iron certainly didn’t disappoint. Setting the temperature is a simple case of using the buttons to move the temperature up and down on the OLED display, and once it remains at a particular temperature it stores that setting in its non-volatile memory.

In Test

To test the iron we assembled a little radio kit, a surface mount design intended for first-time surface mount solderers and thus using fairly substantial 1206 components and SOICs rather than SOPs or smaller integrated circuits. We found the iron perfectly easy to use, but with one caveat: the stock bit is a pencil tip, type “B2” that is fine for the larger surface mount devices but which would in our opinion probably be a little unwieldy for anything smaller than an 0805. Fortunately there is a large range of other bits of all shapes and sizes for the iron, including one with a finer point that surface-mount wizards may want to look at.

One of the features of the TS100 is that its firmware can be easily upgraded over USB, and to that end it is easy to download the latest version and install it. Simply hold down one of the buttons on live USB plug-in to enter firmware upgrade mode, and when it appears as a drive on the computer into which you’ve plugged it, copy the firmware file to the drive and it upgrades itself.

Unfortunately, in our case the curse of the firmware upgrade struck us, and after downloading and unpacking the file we were unable to make our iron accept it. We can confirm that the process failed for us on Ubuntu, Windows, and MacOS computers, so maybe it just wasn’t our lucky day. Fortunately the TS100 is not one of those devices that is easily bricked by a failed firmware upgrade, so we were simply presented with an error file rather than a dead iron. A soldering iron is in essence a hardware device not a software one, and the shipped firmware version is fine for soldering, so that’s what we’re reviewing.

It’s worth pointing out here that the TS100 firmware is billed as open-source, and that the code and schematics are available from the link above. We say billed as open-source though, because while the code is officially freely available it does not seem to be accompanied by any form of open-source licence. This may be of more concern to software libre purists than many readers, but still, it is worth mentioning.

The TS100 config file
The TS100 config file

We’re told that the latest versions of the firmware provide adjustment of the iron parameters other than temperature through a menu system on the device itself, but on our model the older firmware requires the editing of a text file that appears in a drive when you plug the iron’s USB port into a computer without holding a button down to enter firmware upgrade mode. In the file you can find settings for the different temperatures and timings, and adjust them to your taste.

The Bottom Line

After having the TS100 for a few weeks, what’s our verdict? Is it a good iron, does it give those expensive irons a run for their money, and would we recommend that you consider one?

It’s important to consider the soldering iron market as a whole when answering those questions. If you spend a four-figure sum on a soldering station, you will find yourself with an iron that is lighter than the TS100, it will have a shorter reach, a quicker warm-up time, better software control, more available bits, in fact it will beat the TS100 in every way possible. You’ll be using that soldering station hard every day for a decade, and it will still deliver the goods.

If however you spend a low three-figure sum on a soldering station from a quality manufacturer, you’ll get something closer. It’ll probably have a similar choice of bits and a nice extra-flexible silicone cable, and it will probably last longer, but in soldering terms it will be a surprisingly similar experience. Even having to spend a few more dollars on a power supply, a decent soldering station in this range will still cost you over twice as much as the TS100.

At the same price range or lower as the TS100 it’s likely that soldering stations will start to decrease in quality, be from anonymous manufacturers with no replacement bit support, and not have quite such a good user experience. Perhaps an all-in-one iron for a similar price such as the Antex TCS50 we reviewed earlier in the year is a better comparison, and at this point we start to see how the TS100 is redefining this sector. The Antex is a good iron for everyday soldering, it is the same weight as the TS100 and has the same reach. It’s mains-powered and comes with an extra-flexible silicone cable, but when you compare the irons side-by-side it becomes obvious that the Antex is being left behind. Its handle is huge by comparison, and its temperature control is limited to a very basic up/down setting with no configurability.

So if you are a high-end professional user looking for an iron to work with every day, the TS100 is probably not a choice that will displace your top-of-the-range model. But if you are a regular solderer or serious electronics hobbyist who is looking for the best bang for buck, you should definitely consider one as an alternative to a low-end soldering station. And if you are buying at the bottom of the temperature-controlled iron food chain then you should really give the TS100 a serious look. Returning to our point at the start of this review, it’s cheap, lightweight, and certainly good enough.

Meanwhile if you manufacture soldering irons, this one will probably have you worried. We look forward to seeing what the models produced to compete with it have to offer.

The Miniware TS100 soldering iron, along with associated bits and power supplies, can be found online from all the usual vendors of Chinese electronics.