MRRF: Flexible 3D Printing

The concession stand at the Midwest Rep Rap Festival did not disappoint when it came to the expected fare: hot dogs, walking tacos, and bananas for scale. But the yummiest things there could not be bought—the Nutella prints coming off the Ultimaker² at the structur3D booth.

3D printed gasket
Flexible gasket printed in silicone atop a rigid 3D printed engine block.

Hey, what? Yes, an Ultimaker² that can print in Nutella, icing sugar, silicone, latex, wood filler, conductive ink, polyurethane, peanut butter, and a growing list to which you should contribute. This is possible because of their Discov3ry Universal Paste Extruder add-on, which is compatible with most filament printers, especially those that use a RAMPs or Arduino control board.

A large syringe containing the substance of your choice is loaded business end up in the Discov3ry. It gets pushed through tubing that runs to the print head and out through one of many commonly available polypropylene or stainless steel tips. The structur3D team has found that printing on waxed paper works best for the materials they’ve proven out. Each syringe holds 60cc of stuff, and the Discov3ry comes with three of them. They are currently available for pre-order, with a shipping forecast of early summer.

3D Printed Motorcycle Weighs Only 18kg

After discovering 3D printing a few years ago, [Jonathan Brand] was hooked. He loved the ability to design things on a computer, and then have them realized as a real 3D object he can touch — sometimes within hours of doing the CAD work. He’s always wanted a motorcycle, but it was never the right time so at long last he decided to print one.

First off — no, it doesn’t actually work — it’s a 1:1 scale model of a 1972 Honda CB500. But it is an amazing testament to 3D printing and prototyping. He’s been working on it for almost as long as he’s had a 3D printer, and while he didn’t quote exactly how long it took to print everything, we’re guessing its in the thousands of hours.

In fact, he printed tons of components, labeled them, and organized them for up to a year before even being able to assemble them together. Talk about project dedication.

He’s even designed loose fits for moving parts — the wheels spin! To give it the cool transparent look, each part is actually almost completely hollow — with thin wall thickness of only about a millimeter. Because of this, the whole bike only weighs 18kg.

For a slightly more functional large-scale 3D print — how about printing your own colorful kayak?

Continue reading “3D Printed Motorcycle Weighs Only 18kg”

MRRF: Mostly Harmless 3D Printed Arms

The Midwest RepRap Festival isn’t just people hanging out with their 3D printers all weekend; There are also people bringing all the things they made with their 3D printers. There was an R2D2 and half of a B1 Battle Droid, a 3D printed quadcopter and of course 3D printed weaponry. [Ryan] and [Kane] from Mostly Harmless Arms brought a collection of their totally not trademark infringing not-Nerf guns.

The guys have a few designs for guns that shoot silicone-tipped extruded foam darts much further than a Nerf gun. There’s a bow, a more traditional spring-powered blaster, and a crossbow. All the designs with the exception of a few pipes and tubes and springs are 3D printed, and all the parts are small enough to fit on an 8″ bed. The darts are made with a dome mold for silicon and insulation foam that’s normally wedged in window and door frames. They’re dusted with cornstarch to prevent sticking, although in the video below there were a few jams. That’s to be expected; there was a camera around.

Continue reading “MRRF: Mostly Harmless 3D Printed Arms”

Take a Spin on this Voice-Controlled 3D Scanning Rig

[Aldric Negrier] wanted to make 3D-scanning a person streamlined and simple. To that end, he created this voice-controlled 3D-scanning rig.

[Aldric] used a variety of hacking skills to make this project, and his thorough Instructable illustrates this nicely. Everything from CNC milling to Arduino programming to 3D-printing was incorporated into the making of this rig. Plywood was used to construct the base and the large toothed gear. A 12″ Lazy Susan bearing was attached to this gear to allow smooth rotation. In order to automate the rig, a 12V DC geared motor was attached to a smaller 3D-printed gear and positioned on the base. When the motor is on, the smaller gear’s teeth take the larger gear for a spin. He used a custom dual H-bridge motor driver made by a friend, which is connected to an Arduino Nano. The Nano is also connected to a Bluetooth module and an ultrasonic range finder. When an object within 1-35cm is detected on the rig for 3 seconds, the motor starts to spin, stopping when the object is no longer detected. A typical scan takes about 60 seconds.

This alone would have been a great project, but [Aldric] did not stop there. He wanted to be able to step on the rig and issue commands while being scanned. It makes sense if you want to scan yourself – get on the rig, assume the desired position, and then initiate the scan. He used the Windows speech recognition SDK to develop an application that issues commands via Bluetooth to Skanect, a 3D-scanning software. The commands are as simple as saying “Start Skanect.” You can also tell the motor to switch on or off and change its speed or direction without breaking form. [Aldric] used an Asus Xtion for a 3D-scanner, but a Kinect will also work. Afterwards, he smoothed his scans using MeshMixer, a program featured in previous hacks.

Check out the videos of the rig after the break. Voice commands are difficult to hear due to the background music in one of the videos, but if you listen carefully, you can hear them. You can also see more of [Aldric’s] projects here or on this YouTube channel.

Continue reading “Take a Spin on this Voice-Controlled 3D Scanning Rig”

MRRF: MakerOS for Maker Business Management

If you’re a maker business, making the things is usually your chief concern, whether you’re 3D printing widgets or milling them. But if you don’t put enough time and energy into things like client interaction and payments, you may find that you don’t have customers. [Mike Moceri] was tired of bloated systems like Salesforce that cost entirely too much for what they are. He created makerOS to help maker businesses be more effective without wasting time, starting with his own—a Detroit-based 3D printing, design, and prototyping firm called Manulith.

When a business registers with makerOS, they get a custom subdomain. makerOS is white-label software that provides a dashboard for the business owner and opens the lines of communication between maker and client. The client sees their own dashboard, and here they can can fill out a short form to describe what they want and upload photos and files from common cloud services. The dashboard provides a simple way to quote products and services, take payments, and facilitate discussion between manufacturer and client through a sort of wall/bulletin board which supports @ mentions and push notifications.

It’s free to register a subdomain with makerOS and install it on your existing site. The minimal costs associated are transaction based and flexible as your company grows.

BeagleBones At MRRF

[Jason Kridner] – the BeagleBone guy – headed out to the Midwest RepRap Festival this weekend. There are a lot of single board computers out there, but the BeagleBoard and Bone are perfectly suited for controlling printers, and motion control systems thanks to the real-time PRUs on board. It’s not the board for you if you want to play retro video games or build a media center; it’s the board for building stuff.

Of interest at the BeagleBooth were a few capes specifically designed for CNC and 3D printing work. There was the CRAMPS, a clone of the very popular RAMPS 3D printer electronics board made for the Beagle. If you’re trying to control an old mill that is only controllable through a parallel port, here’s the board for you. There are 3D printer boards with absurd layouts that work well as both printer controller boards and the reason why you should never come up with the name of something before you build it.

[Jason]’s trip out to MRRF wasn’t only about extolling the virtues of PRUs; Machinekit, a great motion control software, was also there, running on a few Beagles. The printer at the BeagleBooth was running Machinekit and apart from a few lines of GCode that sent the head crashing into the part, everything was working great.

Continue reading “BeagleBones At MRRF”

MRRF: (not quite) Chocolate Clock

[Jason] is a woodworker. At least, he was until he saw his first 3D printer. While he may still work in wood, he particularly likes adapting scroll saw patterns for 3D printing. His clock started as a woodworking pattern for use on a scroll saw. To adapt it for 3D printing, [Jason] scanned the plotter-sized pattern pieces into Inkscape, where he was able to do things like add bevels before sending the pieces to OpenSCAD.

tall chococlockAs you might imagine, a great deal of work went into this build, beginning with the scanning. [Jason] starting scanning last October and finished in January. Printing started January 9th, and he told me the final pieces were printed early this morning. We know you want all the details, so here goes: this build took just over six rolls of PLA at 20% infill. It’s 48″ tall and about 24″ wide. It was printed on what [Jason] referred to as his “very modified” Replicator 2. He glued the pieces together with Testor’s, and that took about 30 hours. All through the project, he kept meticulous notes in a spreadsheet of print times and filament used.

We were honored to be among the first to see [Jason]’s incredible clock build at this year’s Midwest RepRap Festival. He would like to take it on tour this year to the nearby Maker Faires. If he can figure out how transport it safely, he’d like to show it at World Maker Faire in NYC.