“You Sank my Dysprosium!”: Periodic Table Battleship

Kids these days, they have it so easy. Back in the old days, we learned our elements the hard way, by listening to “The Elements” by Tom Lehrer over and over until the vinyl wore out on the LP. Now, thanks to [Karyn], kids can learn the elements by playing “Battleship” – no tongue-twisting lyrics required.

For anyone familiar with the classic “Battleship” game, you’ll wonder why no one thought of this before. [Karyn]’s version of the game is decidedly low-tech, but gets the job done. She printed out four copies of the periodic table, added letters to label the rows, and laminated them. A pair of tables goes into a manila file folder, the tops get clipped together, and dry-erase markers are used to mark out blocks of two to five elements to represent the ships of the Elemental Navy on the lower table. Guesses at the location of the enemy ships can be made by row and series labels for the elementally challenged, or better yet by element name. Hits and misses are marked with Xs and Os on the upper table, and play proceeds until that carrier hiding in the Actinide Archipelago is finally destroyed.

This is pure genius in its simplicity and practicality, but of course there’s room for improvement. The action-packed video after the break reveals some structural problems with the file folders, so that’s an obvious version 2.0 upgrade. And you can easily see how this could be used for other tabular material – Multiplication Table Battleship? Sounds good to us. And if your nippers catch the chemistry bug from this, be sure to take a deeper dive into the structure of the periodic table with them.

Now, if you’ll excuse me: “There’s antimony, arsenic, aluminum, selenium, and hydrogen and oxygen and nitrogen and rhenium….”

Continue reading ““You Sank my Dysprosium!”: Periodic Table Battleship”

Cyborg Photosynthetic Bacteria!

This is weird science. Researchers at Lawrence Berkeley National Laboratory have taken some normal bacteria and made them photosynthetic by adding cadmium sulfide nanoparticles. Cadmium sulfide is what makes the garden-variety photoresistor work. That’s strange enough. But the bacteria did the heavy lifting — they coated themselves in the inorganic cadmium — which means that they can continue to grow and reproduce without much further intervention.

Bacteria are used as workhorses in a lot of chemical reactions these days, and everybody’s trying to teach them new tricks. But fooling them into taking on inorganic light absorbing materials and becoming photosynthetic is pretty cool. As far as we understand, the researchers found a chemical pathway into which the electrons produced by the CdS would fit, and the bacteria took care of the rest. They still make acetic acid, which is their normal behavior, but now they produce much more when exposed to light.

If you want to dig a little deeper, the paper just came out in Science magazine, but it’s behind a paywall. But with a little searching, one can often come up with the full version for free. (PDF).

Or if you’d rather make electricity, instead of acetic acid, from your bacteria be our guest. In place of CdS, however, you’ll need a fish. Biology is weird.

Headline images credit: Peidong Yang

Will Metallic Glue Replace Solder?

A video recently surfaced touting a new method of joining materials together. It’s called MesoGlue, and apparently, it could replace soldering or even welding in certain cases.

First announced on this month’s Advanced Materials and Processes (caution, big file!) it seems… legit. The basic premise is it uses nanorods of material — kind of like velcro — that once you push together, intertwine with each other, and become solid. They’re surrounded with a shell that liquefies, which solidifies the bond. This makes it able to withstand high heat, once bonded.

This kind of technology could have an impact in the way we join solder circuits, pipes, bond IC’s to heat sinks, and attaching de-similar materials with different thermal expansion coefficients.

Continue reading “Will Metallic Glue Replace Solder?”

Conductive Silicone Makes Flexible Circuits

Flexible circuits and wearables seem to be all the rage these days. We’ve got conductive paint, glue, and even thread. So how about conductive silicone? Well, as it turns out — it’s not that hard to make.

[Andrew Quitmeyer] has been researching flexible circuits for a while now, and recently stumbled upon an expired patent for flexible ignition cables, using carbon fibers mixed with a conductive silicone. He started playing around with it, and discovered that by dissolving pieces of carbon fiber in rubbing alcohol, letting it dry, and then mixing it into a 2-part silicone you get pretty good electrical conductivity. In fact, in the range of 40-150ohms, which is actually pretty darn impressive!

Continue reading “Conductive Silicone Makes Flexible Circuits”

7th Period of the Periodic Table Complete

For the last fifty or so years, the periodic table has been incomplete. Elements after uranium on the periodic table have been synthesized for the past few decades, but there were always a few missing blocks in the periodic table. These elements, with atomic numbers of 113, 115, 117, and 118 comprise the missing parts of period 7 – the lowest row – of the periodic table. Now, IUPAC, the International Union of Pure and Applied Chemistry, has announced the verification of the discoveries of the last four elements of the seventh period of the periodic table.

With the announcement of the verification of discovery for these elements, they will get a name. Currently elements 113, 115, 117, and 118 are known as Ununtrium, Ununpentium, Ununseptium, and Ununoctium, respectively. What these elements will be named depends on the proposals by the discoverers of these elements.

Element 113 was discovered by researchers at the RIKEN laboratory in Japan, and these researchers will be able to propose a name and atomic symbol for their discovery. Elements 115, 117, and 118 were discovered through a partnership between the Joint Institute for Nuclear Research in Dubna, Russia, Lawrence Livermore National Laboratory in California, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. Researchers at these three laboratories will propose names and atomic symbols for these three elements.

It should be noted that Lawrence Livermore National Laboratories and the Joint Institute for Nuclear Research in Dubna each have their own element named after them: Lawrencium and Dubnium, with atomic numbers 103 and 105, respectively. Having element 113, 115, and 118 named after Oak Ridge National Laboratory wouldn’t be a bad proposal, and would be rather fitting given the laboratory’s influence on the last half-century of physics.

Of particular interest is the naming of element 118. Because element 118 falls within group 18 of the periodic table, it is a noble gas, with a particular naming pattern. each of the elements in group 18 end with the suffix ~on, instead of the suffix for the rest of the periodic table, ~ium (helium is the exception to this rule due to historical precedent). Whether element 118 will use the ~on or ~ium suffix is up to debate; current IUPAC rules say all new elements should end with ~ium, but recommendations have been published to name all group 18 elements with the ~on suffix.

This is not the end of the periodic table by any means. It is possible that elements with higher atomic numbers can be synthesized. However, experiments to synthesize element 119 have so far come up short, and the predicted properties of element 119 put it at the limits of what current technology is able to detect.

The Mystery of the Boiled Batteries

While debugging a strange battery failure in a manufacturing process, [Josh] discovered a new (to us) LiPo battery failure mode.

Different battery chemistries react differently to temperature. We’ve used lithium exclusively in high-altitude ballooning, for instance, because of their decent performance when cold. Lithium batteries generally don’t like high temperatures, on the other hand, but besides the risk of bursting into flames, we had no idea that heat could kill them. When the battery’s voltage is already low, though, it turns out it can.

[Josh]’s process required molding plastic with the battery inside, and this meant heating the batteries up. After the fact, he noticed an unreasonably high failure rate in the batteries, and decided to test them out. He put the batteries, each in a different initial charge, into a plastic bag and tortured them all with ice and fire. (OK, boiling water.)

When the batteries got hot, their voltage sagged a little bit, but they recovered afterwards. And while the voltage sagged a little bit more for the batteries with lower initial charge, that’s nothing compared to the complete failure of the battery that entered the hot water with under 1V on it — see they yellow line in the graphs.

battery_voltages

There’s a million ways to kill a battery, and lithium batteries are known not to like being completely discharged, but it looks like the combination of deep discharge and heat is entirely deadly. Now you know.

What Can Happen When You Do Try This At Home

In somewhat of a countdown format, [John McMaster] looked back over the last few years of projects and documented the incidents he’s suffered (and their causes) in the course of doing cool stuff.

[John] starts us off easy — mis-wiring and consequently blowing up a 400V power supply. He concludes “double-check wiring, especially with high power systems”. Other tips and hazards involve situations in which we seldom find ourselves: “always check CCTV” before entering the experiment chamber of a cyclotron to prevent getting irradiated. Sounds like good advice.

hotplate[John] also does a lot of IC decapping, which can involve both heat and nasty acids. His advice includes being ready for large spills with lots of baking soda on hand, and he points out the need to be much more careful with large batches of acid than with the usual smaller ones. Don’t store acid in unfamiliar bottles — all plastics aren’t created equal — and don’t store any of it in your bedroom.

The incidents are listed from least to most horrible, and second place goes to what was probably a dilute Hydrofluoric acid splash. Keyword: necrosis. First place is a DIY Hydrochloric acid fabrication that involves, naturally, combining pure hydrogen and chlorine gas. What could possibly go wrong?

Anyway, if you’re going to do “this” at home, and we know a bunch of you are: be careful, be protected, and be prepared.

Thanks [J. Peterson] for the tip!