ZX Spectrum Turned Into A USB Keyboard

ZX

They’re a little hard to find in the US, but the ZX Spectrum is right up there with the Commodore 64 and the Atari 8-bit computers in England. [Alistair] wanted to recreate the feeling of sitting right in front of the TV with his Speccy, leading him to create the ZX Keyboard, a Spectrum repurposed into a USB keyboard.

While most projects that take an old key matrix and turn it into a USB keyboard use the TMK firmware, [Alistair] wanted to flex his programming muscles and wrote the firmware from scratch. It runs on an Arduino Pro Mini, scanning the matrix of five columns and eight half rows to turn combinations of keypresses into an astonishing number of commands, given the limited number of keys on the ZX.

The firmware is available on [Alistair]‘s repo, available to anyone who doesn’t want to pay the £50 a new ZX Spectrum keyboard will cost. As far as the usability of a Spectrum keyboard goes, at least [Alistair] didn’t have an Atari 400 sitting in the attic.

Aerodynamics? Super Honey Badger Don’t Give a @#*^@!

honeybadger-rcplane

[Arron Bates] is a pro R/C Pilot from Australia. He’s spent the last few years chasing the dream of a fixed wing plane which could perform unlimited spins. After some promising starts with independently controlled wing spoilers, [Arron] went all in and created The Super Honey Badger. Super Honey Badger is a giant scale R/C plane with the tail of a helicopter and a soul of pure awesome.

Starting with a standard 87″ wingspan Extra 300 designed for 3D flight, [Arron] began hacking. The entire rear fuselage was removed and replaced with carbon fiber tubes. The standard Extra 300 tail assembly fit perfectly on the tubes. Between the abbreviated fuselage and the tail, [Arron] installed a tail rotor from an 800 size helicopter. A 1.25 kW brushless motor drives the tail rotor while a high-speed servo controls the pitch.

[Arron] debuted the plane at HuckFest 2013, and pulled off some amazing aerobatics. The tail rotor made 540 stall turn an easy trick to do – even with an airplane. Flat spins were a snap to enter, even from fast forward flight! Most of [Arron's] maneuvers defy any attempt at naming them – just watch the videos after the break.

Sadly, Super Honey Badger was destroyed in May of 2014 due to a structural failure in the carbon tubes. [Arron] walked away without injury and isn’t giving up., He’s already dropping major hints about a new plane (facebook link).

[Read more...]

Bil Herd: Computing with Analog

When I was young the first “computer” I ever owned was an analog computer built from a kit. It had a sloped plastic case which had three knobs with large numerical scales around them and a small center-null meter. To operate it I would dial in two numbers as indicated by the scales and then adjust the “answer” by rotating the third dial until the little meter centered. Underneath there was a small handful of components wired on a terminal strip including two or three transistors.

Science Fair Analog Computer

Science Fair Analog Computer

In thinking back about that relic from the early 1970’s there was a moment when I assumed they may have been using the transistors as logarithmic amplifiers meaning that it was able to multiply electronically. After a few minutes of thought I came to the conclusion that it was probably much simpler and was most likely a Wheatstone Bridge. That doesn’t mean it couldn’t multiply, it was probably the printed scales that were logarithmic, much like a slide rule.

Analog slide rule on digital calculator

Old meets new: Analog and digital computation

Did someone just ask what a slide rule was? Let me explain further for anyone under 50. If you watch the video footage or movies about the Apollo Space Program you won’t see any anyone carrying a hand calculator, they didn’t exist yet. Yet the navigation guys in the first row of Mission Control known aptly as “the trench”, could quickly calculate a position or vector to within a couple of decimal places, and they did it using sliding piece of bamboo or aluminum with numbers printed on them.

[Read more...]

The Entire Commodore 64 Library In Your Pocket

Monty

[sweetlilmre] is just beginning his adventures in retrocomputing, and after realizing there were places besides eBay to buy old computers, quickly snagged a few of the Amigas he lusted after in his youth. One of the machines that didn’t make it into his collection until recently was a Commodore 64 with Datasette and 1541 drive. With no tapes and a 1541 disk drive that required significant restoration, he looked at other devices to load programs onto his C64.

These devices, clever cartridge implementations of SD cards and Flash memory, cost more than anyone should spend on a C64. Realizing there’s still a cassette port on the C64, [sweetlilmre] created Tapuino, the $20 Commodore tape emulator

The hardware used to load games through the Datasette connector included an Arduino Nano, a microSD breakout board, a 16×2 LCD, some resistors, buttons, and a little bit of wire. The firmware part of the build – available here on the Git – reads the .TAP files off the SD card and loads them into the C64.

[sweetlilmre] posted a very complete build post of the entire device constructed on a piece of protoboard, Pop that thing in a 3D printed case, and he can have the entire C64 library in his pocket.

Cold War Clock is all Tubes

A clock built from tubes

 

Clocks are great projects to build. They serve a real purpose, and there’s a wide variety of ways to implement a unique timepiece. [Hank]‘s Cold War Clock only uses parts and technologies that were available in 1959. It contains no semiconductors, but has an audible alarm and reasonable time accuracy.

Looking through the hand drafted schematics, you’ll find a number of Dekatron tubes. These vintage components are used as registers to store and count the time. [Hank] found some cheap Soviet Dekatrons, but had to machine his own sockets to connect them. These tubes do the counting, but the actual display consists of nixies.

A cost estimate puts this clock at $2130 in 1959, which equates to $17040 today. Clearly this would be outside the price range of most hobbyists. The actual build cost [Hank] around $1600.

There’s some intricate details in this build. The front panel has an authentic look to it, and the manual has instructions for “demolition of clock to prevent enemy use.” [Hank] calls it a “creative anachronism.” In a sense, it’s a reproduction of a product that never actually existed.

A video of this clock in action, including the Cold War era alarm, is after the break.

[Read more...]

Reverse Engineering Unobtanium

font

If you listen to [Bil Herd] and the rest of the Commodore crew, you’ll quickly realize the folks behind Commodore were about 20 years ahead of their time, with their own chip foundries and vertical integration that would make the modern-day Apple jealous. One of the cool chips that came out of the MOS foundry was the 6500/1 – used in the keyboard controller of the Amiga and the 1520 printer/plotter. Basically a microcontroller with a 6502 core, the 6500/1 has seen a lot of talk when it comes to dumping the contents of the ROM, and thus all the code on the Amiga’s keyboard controller and the font for the 1520 plotter – there were ideas on how to get the contents of the ROM, but no one tried building a circuit.

[Jim Brain] looked over the discussions and recently gave it a try. He was completely successful, dumping the ROM of a 6500/1, and allowing for the preservation and analysis of the 1520 plotter, analysis of other devices controlled by a 6500/1, and the possibility of the creation of a drop-in replacement for the unobtanium 6500/1.

The datasheet for the 6500/1 has a few lines describing the test mode, where applying +10 VDC to the /RES line forces the machine to make memory fetches from the external pins. The only problem was, no body knew how to make this work. Ideas were thrown around, but it wasn’t until [Jim Brain] pulled an ATMega32 off the top of his parts bin did anyone create a working circuit.

The code for the AVR puts the 6500/1 into it’s test mode, loads a single memory location from ROM, stores the data in PORTA, where the AVR reads it and prints it out over a serial connection to a computer. Repeat for every location in the 6500/1 ROM, and you have a firmware dump. This is probably the first time this code has been seen in 20 years.

Now the race is on to create a drop-in replacement of what is basically a 6502-based microcontroller. That probably won’t be used for much outside of the classic and retro scene, but at least it would be a fun device to play around with.

Printing Text with a Chart Recorder

A chart recorder printing 'Hello World'

Chart recorders are vintage devices that were used to plot analog values on paper. They’re similar to old seismometers which plot seismic waves from earthquakes. The device has a heated pen which moves across a piece of thermally sensitive paper. This paper is fed through the machine at a specified rate, which gives two dimensions of plotting.

[Marv] ended up getting a couple of discontinued chart recorders and figured out the interface. Five parallel signals control the feed rate of the paper, and an analog voltage controls the pen location. The next logical step was to hook up an Arduino to control the plotter.

However, once the device could plot analog values, [Marv] quickly looked for a new challenge. He wanted to write characters and bitmaps using the device, but this would require non-continuous lines. By adding a solenoid to lift the pen, he built a chart recorder printer.

After the break, check out a video of the chart recorder doing something it was never intended to do. If you happen to have one of these chart recorders, [Marv] included all of the code in his writeup to help you build your own.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 92,329 other followers