Mechanical Clock Relies On Marbles To Tick

rolling ball clock

As fun as micro-controllers and RTCs are, sometimes it’s truly fascinating to see a completely mechanical clock. Using only gravity this Pendulum Marble Clock (German version) by [Turnvater Janosch] runs for 12 hours at a time and has an accuracy error of less than one second per day!

It works by raising a 2.5kg weight which sinks approximately 1 meter during that 12 hours. A series of steel ball bearings count the minutes, 5 minute increments, and hours. Every minute one ball is released on the track — when the track fills up, trap doors open releasing the balls to the next level. The first level is minutes, the second, 5 minutes, and the third, hours.

The entire thing is made out of wood, plastic gears, brass and steel wire, and an old flat iron (although we’re really not too sure what that’s used for…)

[Read more...]

The Design And Fabrication Of A Digital Clock


This clock is the first thing that [Kevin] ever made, way back before the Arduinofication of making, and long before the open hardware community exploded, and before the advent of cheap, custom PCBs. It’s an elegant design, with six seven-segment displays, a time base derived from line frequency, controlled entirely by 74-series logic chips. There was only one problem with it: it kinda sucked. Every so often, noise would become a factor and the time would be displayed as 97:30. The project was thrown in the back of the closet, a few revisions were completed, and 13 years later, [Kevin] wanted to fix his first clock.

The redesign used the same 1Hz timebase to control the circuitry, but now the timebase is controlled by a DS3231 RTC with an ATtiny85. The bridge rectifier was thrown out in favor of a much simpler 7805 regulator, and a new board was designed and sent off to OSHPark. Oh, how times have changed.

With the new circuitry, [Kevin] decided to construct a new case. The beautiful Hammond-esque enclosure was replaced with the latest and greatest of DIY case material – laser cut acrylic. Before, [Kevin] would put a jumper on the 1Hz timebase derived from the line frequency to set the clock – a task that makes plugging a clock in exactly at midnight a much simpler solution. Now, the clock has buttons to set the hours and minutes. Much improved, but still an amazing look at how far DIY electronics have come in a little over a decade.


The Hour of the 3D Printed Clock Draws Nigh


Many have tried, but [Christoph Laimer] has succeeded in designing a working, (relatively) accurate clock nearly completely from 3D printed parts. Every gear, pulley, wheel and hand of [Christoph's] clock is printed. Only a few screws, axles, a weight, and a string are non-printed. Even the crank to wind the clock is a 3D printed part.

[Christoph] designed his clock in Blender. It took quite a bit of design work to create parts that would work and be printable. Even more work was involved in printing over 100 failed prototype parts.

One might think that [Christoph] is using the latest  printers from the likes of Makerbot or Utimaker to achieve this feat. It turns out he’s using a discontinued Rapman 3.2 printer. Further proof that even “older” printers are capable of great things! [Christoph] does run his printer rather slowly. Printing a single gear with 0.125 mm layers and a 0.4 mm nozzle takes him 2 or 3 hours.

Mechanically, the clock is gravity powered with an anchor escapement. Rather than a pendulum, [Christoph] chose to use a balance wheel and hairspring assembly to govern the escapement.  Even the spring is printed from standard PLA. The weight is suspended from a pulley block. The clock isn’t particularly efficient. 70cm of height will run the clock for only 2 hours.

[Christoph's] clock has proven to be accurate to within 1/4 second per hour. He hasn’t provided temperature stability data – but being PLA, we’d suggest not getting it too hot!

[Read more...]

LED Clock Looks Cool AND Tells Time

LED Arduino Clock

Clocks have taken many forms of the years, starting with shadow clocks and sundials in Egypt around 3500 BC. Obviously, these could only tell the time while the sun was out. Water Clocks followed which could track time in the dark. Water Clocks are basically a bowl with a hole in the bottom. This bowl was set in a container filled with water. The water entered the bowl at a consistent rate and graduations on the inside of the bowl showed how much time had passed.

Mechanical clocks followed, as did quartz and the atomic clock. We have now entered a new era in time-telling, the Bamboo LED Clock. [Pascal] brings us this funky fresh chronometer all the way from Germany.

The front face is made from a bamboo pizza plate and gives the clock some modern minimalist pizzazz. A 1-meter long LED strip is attached to the circumference of the plate and contains 60 individually assignable RGB LED’s. An Arduino and Real Time Clock are responsible for the time keeping and coordination of the LED’s.

As you can see in the photo, 2 of the LED’s colors are used. The single red LED indicates the hour. The strip of blue LED’s show the minutes. If you’d like to build one of these [Pascal] has shared the Arduino code on his Instructables page.

Bacon Alarm Clock Won’t Burn Your House Down

Bacon Alarm Clock

If you have trouble waking up in the morning then maybe this alarm clock is for you. A bacon-aroma-releasing alarm clock!

Fueled by her love of bacon, Instructable’s user [llopez2005] decided she wanted to try making an alarm clock that would actually get her out of bed, hungry, and ready for bacon. Instead of trying to design a clock that would actually cook bacon — which might be a bit dangerous — she’s found an extract of bacon aroma which she could slowly release instead.

The clock makes use of an Arduino Uno with a RTC shield as well as a LED array for the clock’s display. The “bacon” is actually made out of bake-able clay, which sits on top of unscented wax, infused with the bacon aroma oil. The bacon and “bacon grease” sit in a baby frying pan over top of a small heater element designed for warming candles. Before the alarm goes off, a SSR turns on the element which slowly melts some of the wax, releasing its ever so delicious scent.

What we really like about the clock is the level of detail she put into its appearance. The base is designed after a small wood burning stove they have in the house, and she’s even made a Plexiglas display case for the frying pan — with holes to let the aroma out though of course!

Bomb Clock Scares You Awake!

Bomb Clock Scares You Awake

What better way to wake up than by fearing your impending explosion if you don’t hit the correct snooze combination! This is the DEVESTATOR (Translated), [Jacek's] latest fun project, straight from Poland.

As an avid paintball and airsoft fan, [Jacek] wanted to build a unique clock — so he decided to make his own classic dynamite stick bomb… clock. He’s using a ATmega8 microcontroller at the heart of the project with both a DS1307 RTC and a DS1820 temperature sensor, because just for kicks, the clock also monitors ambient temperature!

To add to the realism of the project he also designed the PCB from scratch using Eagle CAD, which allowed him to make  the whole thing look even more threatening. To actually make the PCB he used the laminate thermal transfer method. The four buttons on the PCB allow you to scroll through the date, time, temperature, and set alarm times.

Oh and the “dynamite”? Paper towel rolls covered in red tape.

[Read more...]

Huge RGB Ring Light Clock


After several months of work, [Greg] has completed one of the most polished LED clocks we’ve ever seen. It’s based on the WS2812 RGB LEDs, with an interesting PCB that allowed [Greg] to make a huge board without spending a lot of money.

The board is made of five interlocking segments, held together with the connections for power and data. Four of these boards contain only LEDs, but the fifth controller board is loaded up with an MSP430 microcontroller, a few capsense pads for a 1-D touch controller, and programming headers.

Finishing up the soldering, [Greg] had a beautiful LED ring light capable of being programmed as a clock, but no enclosure. A normal plastic case simply wouldn’t do, so [Greg] decided to try something he’d never done before: casting the PCB inside a block of resin.

A circular mold was made out of a piece of MDF and a router, and after some problems with clear resin that just wouldn’t cure, his ring light was embedded in a hard, transparent enclosure.  Conveniently stuck in the mold, of course. The MDF had absorbed a little bit of the resin, forcing [Greg] to mill the resin ring free from the wood, with a lot of finish sanding to make the clock pretty.

It’s a clock that demonstrates [Greg]‘s copious manufacturing skills, and also his ability to troubleshoot the problems that arose. While he probably won’t be casting things inside an MDF mold anymore, with the right tools [Greg] could easily scale this up for some small-scale manufacturing.



Get every new post delivered to your Inbox.

Join 96,534 other followers