Magic Lantern Brings Linux to Canon EOS Cameras

On April 1st the Magic Lantern team announced a proof of concept that lets you run Linux on a Canon EOS camera. Because of the date of the post we’ve poured over this one and are confident it’s no joke. The development has huge potential.

The hack was facilitated by a recent discovery that the LCD screen on the camera can be accessed from the bootloader. In case you don’t recognize the name, Magic Lantern is an Open Source project that adds features to these high-end cameras by utilizing the bootloader with binary files on the SD card. It’s long been a way of hacking more features in but has always been complicated by the fact that you must figure out how to play nicely with the existing firmware. Commanding the LCD was the last part of the hardware that had previously not been driven directly from Magic Lantern.

Now that the Linux kernel is in the picture, ground-up features can be built without dealing with the stock firmware in any way (and without overwriting it). We’re excited to see where this one goes. Currently it’s just a proof that you can boot Linux, it’s not actually functional yet. Here’s your chance to polish those kernel porting skills you’ve been holding in reserve.

Resourceful DIY Brushless Hand-held Camera Gimbal

Holding a video camera while shooting video can lead to finished footage that has some serious shakes. Lucky for us there are some solutions to this problem such as a passive steady cam stabilizer or an active motor-driven gimbal. [Oscar] wanted a smooth-operating brushless motor gimbal but didn’t want to spend the big bucks it costs for a consumer setup so he went out and built his own.

[Oscar] didn’t have a CNC machine or 3D printer to help with his build. He made his gimbal with simple hand tools out of plywood and hardware store bracketry. In his build post, he talks about how it is important to keep the pivoting axes of the gimbal in line with the camera lens and what he did to achieve that goal. The alignment of the axes and the lens ensures that the video is stable while the gimbal adjusts to keep the camera’s angle constant.

[Oscar] purchased the brushless motors and motor controller which included a gyro sensor on a separate PCB board. The gyro is mounted to the camera mount and sends tilt information back to the controller that then moves the brushless motors to keep the camera level. The final project worked out pretty good although [Oscar] admits he still would like to tune the PID settings in the controller a little better. Check out the video after the break where the stabilized camera is compared to one that is not.

Continue reading “Resourceful DIY Brushless Hand-held Camera Gimbal”

Microscope Camera For Zeroing CNC Machines

After what we’re sure is several dozen screw-ups or at the very least a lot of wasted hours, [Chris] has gotten around to building a very precise microscope camera mount for zeroing out his CNC machine.

If you need to mill a few bits out of a sheet of metal or plastic, it’s important to know exactly where you’re cutting. A CNC machine can take care of the relative positioning, but if you already have half your holes drilled, you also need absolute positioning. This means placing the work piece exactly where you want to cut, or failing that, zeroing the machine to a predefined point on the piece.

[Chris] is accomplishing this with a pen-shaped USB microscope. With a 3D printed mount and a few magnets, this camera can clip right on to the machine, and with the camera interface in Mach3, it’s pretty easy to zero out the mill to within a thousandth of an inch.

There’s a video demo of the camera in action below, but there’s a lot more CNC mods on [Chris]’ website. There’s custom 3D printed vacuum nozzles, and a lot of work on a small desktop Grizzly mill.

Continue reading “Microscope Camera For Zeroing CNC Machines”

Robotic Owl Scares Squirrels Out of their Skin

Tired of the local squirrels tearing up his balcony garden, 11[metroSFVogange] took matters into his own hands and created this, the Squirrelinator 2000.

He had tried buying repellents and other home remedies, but nothing seemed work. And his poor indoor cat was starting to feel emasculated, as he watched through the window helplessly as his owner’s garden was destroyed by the furry terrorists.

It’s built off of an old IP camera he had collecting dust, which happens to have an alarm I/O port… perfect. To disguise the camera he picked up a owl statue for cheap from the hardware store because it was missing an eye — he plans to add a glowing red terminator eye later on, because why not?

After modifying the owl to fit the IP camera, he can now control the owl’s head with the pan and tilt functions of the camera — accessible by smartphone. He’s also thrown on a pair of solar-powered spinning props to help scare off the squirrels as well. In case that’s not enough, when the motion sensor goes off the owl shoots a squirt gun and takes pictures of the (hopefully soaked) squirrel for internet points. Classy.

Sadly, it seems to be working because he hasn’t caught any squirrels in his garden yet! We will of course update this post if a poor sucker attempts to mess with his begonias again.

[via Reddit]

Reach Out and Touch Someone with WiFi Photo Booth

[kitesurfer1404] put together a nice looking vintage photobooth with WiFi capability. He’s using an arduino to monitor the state of the buttons, LED lighting control, seven segment display AND the DSLR camera. He then uses a Raspberry Pi to control imagine processing and to provide scaling and other effects, which can take up to 20 seconds per image. The Pi runs in WiFi Access Point mode, so anyone with a WiFi capable device can connect to the photo booth and view the images.

We’ve seen some interesting twists on photo booths before. But [kitesurfer1404’s] vintage style makes his stand out all on its own. He designed the graphics with Inkscape and printed them on thick paper. He then soaked the graphics in tea for several hours and dried then for several more days to get that nice rustic look.

Be sure to check out [kitesurfer1404’s] site for full details and an assortment of high resolution images of his project.

Face Recognition For Your Next Con

[jwcrawley] is busy planning for the Makevention coming up in Bloomington, Indiana in late August. One problem when working any con is manning the door; it’s a good idea to know how many people are there, and you can’t double count people. Previously, the volunteers used dead trees to estimate how many people have turned up. This year they might go with a more technological solution: face recognition and tracking.

The project is called uWho, and it uses the faceRecognizer class in OpenCV. The purpose of the entire project is to identify who someone is from previous frames. If your face is unknown to the program, your likeness – rather, a few points of data – are added to the database of faces. It’s simple, and according to [jwcrawley], it works.

While this is technically the best way to count how many unique people show up to Makevention, there will be some discussions to see if this solution is appropriate. The program only saves unique data from a face locally, and does nothing online. It’s less evil than whatever Facebook does, but there are obvious privacy implications here.

Link to the Makevention.

Logic Noise: The Switching Sequencer Has the Beat

Logic Noise is all about using logic circuits to make sounds. Preferably sound that will be enjoyable to hear and useful for making music. This week, we’ll be scratching the surface of one of my favorite chips to use and abuse for, well, nearly anything: the 4051 8-way analog switch. As the name suggests, you can hook up eight inputs and select one from among them to be connected up to the output. (Alternatively, you can send a single input to one of eight destinations, but we won’t be doing that here.)

Why is this cool? Well, imagine that you wanted to make our oscillator play eight notes. If you worked through our first installment, you built an abrasive-sounding but versatile oscillator. I had you tapping manually on eight different resistors or turning a potentiometer to eight different positions. This week, we’ll be letting the 4051 take over some of the controls, leaving us to do the more advanced knob twiddling.

Continue reading “Logic Noise: The Switching Sequencer Has the Beat”