Photosphere’ing Made Easy and Cheap

photosphere

Android phones have a cool function called Photo Sphere — unfortunately, unless you’re very steady and can manipulate the phone around its camera’s axis… the results aren’t that amazing. Unless you make a cheap 360 degree panorama head for your tripod that is!

[Oliver Krohn] designed this super simple adapter which you can mount on any tripod. It’s a U-shaped bent piece of aluminum, a bottle cap with a 1/4-20 nut, a thick piece of wire, and a cellphone case. The wire is bent with a notch to sit just below the camera’s lens on the cellphone — it is also placed directly above the tripods panning axis. This puts the nodal point in the perfect place, which allows for a great photo sphere every time.

To see how it works (and the amazing results!) stick around for the following video.

[Read more...]

Stop Motion Water Droplets

logo

The folks at Physalia studio were asked by a company called IdN to produce a little bit of video with a logo. After tossing a few ideas around, they hit upon the concept of projecting the IdN logo inside a falling water droplet. CGI would never get this idea right, so the finished product is the result of stop-motion animation created inside several thousand falling drops of water.

Taking a picture of a falling water droplet was relatively easy; a small drip, a laser pointer and photodiode, and a flash trigger were all that was needed to freeze a drop of water in time. The impressive part of the build is a motion control system for the camera. This system moves the camera along the vertical axis very slowly, capturing one water droplet at a time.

Behind the droplet is a an animation that’s seemingly inspired by a Rorschach test, ending on the IdN logo. The frames for these animations were printed out and placed inside the test chamber/studio upside down to account for the optical effects of a sphere of water.

The end result is a product of over 20,000 pictures taken, all edited down into a single 30-second shot. An amazing amount of work for such a short video but as you can see in the videos below, it’s well worth the effort.

[Read more...]

MacGyver Made IKEA Camera Slider

FBKQ3RUHRKR31UF.LARGE

It’s not hard to drastically increase the production value in your videos by adding a camera slide to your shot — in fact, [Derek] shows us how to make a decent camera slide using parts from IKEA for less than $30.

The hack makes use of a cutting board, glider and hook accessories, a triple curtain rail, and two ceiling fixtures. The ceiling fixtures are simply used to make a mount for the curtain rail to rest on. [Derek] shows us an easy way to make the carriage with some careful drilled holes in the cutting board — he’s added a 3D printed tripod head for mounting the camera, but really you can use whatever you want.

It’s a pretty simple and easy to build rig, and the results are quite impressive — just check out the following video to see!

[Read more...]

ReSCan — Automated Resistor Identification!

resistor id

Need a quick and easy way to sort through a few hundred random resistors? You could do them one at a time by reading the color codes yourself… or you could get a machine to do it for you!

When [Robert] was faced with a pile of unsorted resistors he quickly decided he did not have the patience to sort them manually. So, he started by writing an Android app using OpenCV to detect and identify resistor color codes. The problem is, most phones have trouble focusing at short distances — and since resistors are so small, holding the phone farther back results in color rings only being a few pixels wide — not the greatest for image recognition!

So, he started again on his computer, using a cheap LED-lit webcam instead. He wrote the app in java so he could re-use parts of the code from the Android app. It seems to work pretty well — check it out in the following video! This would be perfect to pair up with your illuminated storage bin hack.

[Read more...]

Using A Computer To Read Braille

braille

[Matthiew] needed to create a system that would allow a computer to read braille. An electromechanical system would be annoying to develop and would require many hardware iterations as the system [Matthew] is developing evolves. Instead, he came up with a much better solution using a webcam and OpenCV that still gets 100% accuracy.

Instead of using a camera to look for raised or lowered pins in this mechanical braille display, [Matthiew] is using OpenCV to detect the shadows. This requires calibrating the camera to the correct angle, or in OpenCV terms, pose.

After looking at the OpenCV tutorials, [Matthiew] found a demo that undistorts an image of a chess board. Using this same technique, he used fiducials from the ARTag project to correctly calibrate an image of his mechanical braille pins.

As for why [Matthiew] went through all the trouble to get a computer to read braille – something that doesn’t make a whole lot of sense if you think about it – he’s building a braille eBook reader, something that just screams awesome mechanical design. We’d be interested in seeing some more info on that project as well.

Yet Another DIY Camera Slider

FAXG8ZEHQQLO7SH.LARGE

Professional camera gear is expensive, which is probably why there is such a huge DIY field for camera equipment. Here’s another great DIY camera slider that you can build for cheap.

Similar to other rigs we’ve seen, the heart of this design makes use of skateboard wheels — they’re cheap, have good bearings, and are easy to mount. He’s created a dolly for them using a T-strap bracket, which is used for wood framing — the wheels mount directly to it without any modification.

What we think is unique about this build are the rails [Shootr] decided to use. They’re U-Post fence posts — strong, rigid, and probably one of the cheapest forms of processed metal you can buy. To hold them together, he’s using a threaded rod with two pieces of 1/2″ square steel tubing, bracing the fence posts. This wedges the dolly in between them with just enough slack to slide smoothly back and forth.

The other method of making a camera slider like this is using tubular rails, which also allows you to add a curve in your camera track. And if you’re looking for a precise, 2-axis camera dolly… you should check out this one!

AVR Barn Door Tracker for Astrophotography

zzjBarnDoorTracker

[ZigZagJoe's] first foray into astrophotography is this impressive AVR barn door tracker, which steps up his night sky photo game without emptying his bank account. If you’ve never heard of astrophotography, you should skim over its Wikipedia page and/or the subreddit. The idea is to capture images otherwise undetectable by the human eye through longer exposures. Unfortunately, the big ball of rock we all inhabit has a tendency to rotate, which means you need to move the camera to keep the night sky framed up.

Most trackers require precision parts and fabrication, which was out of [ZigZagJoe's] grasp. Instead, he found a solution with the Cloudbait Observatory model, which as best as we can tell looks vaguely similar to the tracker we featured last year. Unlike last year’s build—which uses an ATmega32u4 breakout board— [ZigZagJoe's] tracker uses an ATTiny85 for the brains, running a pre-configured table that determines step rate against time.

[Read more...]