Let Skynet Become Self-Aware!

Not so long ago, it was hard to fly. Forget actual manned aircraft and pilots licenses; even flying model aircraft required hours of practice, often under the tutelage of a master at a flying field. But along with that training came an education in the rules of safe flight, including flying at a designated airfield and watching out for obstacles.

We accidentally messed that up. We in the drone industry made aircraft super easy to fly — perhaps too easy to fly. Thanks to smart autopilots and GPS, you can open a box, download an app and press “take off”. The copter will dutifully rise into the air and wait there for further instructions — no skill required. And it will do this even if you happen to be in an NFL football stadium in the middle of a big game. Or near an airport. Or in the midst of a forest fire.

The problem is that along with taking training out of the process of flying a drone, we inadvertently also took out the education process of learning about safe and responsible flight. Sure, we drone manufacturers include all sorts of warning and advisories in our instructions manual (which people don’t read) and our apps (which they swipe past), and companies such as DJI and my own 3DR include basic “geofencing” restrictions to try to keep operators below 400 feet and within “visual line of sight”. But it’s not enough.

Every day there are more reports of drone operators getting past these restrictions and flying near jetliners, crashing into stadiums, and interfering with first responders. So far it hasn’t ended in tragedy, but the way things are going it eventually will. And in the meantime, it’s making drones increasingly controversial and even feared. I call this epidemic of (mostly inadvertent) bad behavior “mass jackassery”. As drones go mass market, the odds of people doing dumb things with them reach the singularity of certainty.

We’ve got to do something about this before governments do it for us, with restrictions that catch the many good uses of drones in the crossfire. The reality is that most drone operators who get in trouble aren’t malicious and may not even know that what they’re doing is irresponsible or even illegal. Who can blame them? It’s devilishly hard to understand the patchwork quilt of federal, state and local regulations and guidelines, which change by the day and even the hour based on “airspace deconfliction” rules and FAA alerts written for licensed pilots and air traffic control. Many drone owners don’t even know that such rules exist.

Drones Themselves Should Know Rules of Each Area

Fortunately, they don’t have to. Our drones can be even smarter — smart enough to know where they should and shouldn’t fly. Because modern drones are connected to phones, they’re also connected to the cloud. Every time you open their app, that app can check online to find appropriate rules for flight where you are, right then and there.

Here’s how it works. The app sends four data fields to a cloud service: Who (operator identifier), What (aircraft identifier), Where (GPS and altitude position) and When (either right now or a scheduled time in the case of autonomous missions). The cloud service then returns a “red light” (flight not allowed), a “green light” (flight allowed, with basic restrictions such as a 400 feet altitude ceiling), or “yellow light” (additional restrictions or warnings, which can be explained to the operator in context and at the point of use).


Right now industry groups such as the Dronecode Foundation, the Small UAV Coalition (I help lead both of them, but this essay just reflects my own personal views) and individual manufacturers such as 3DR and DJI are working on these “safe flight” standards and APIs. Meanwhile, a number of companies such as Airmap and Skyward are building the cloud services to provide the up-to-date third-party data layer that any manufacturer can use. It will start with static no-fly zone data such as proximity to airports, US national parks and other banned airspace such as Washington DC. But it will quickly add dynamic data, too, such as forest fires, public events, and proximity to other aircraft.

(For more on this, you can read a white paper from one of the Dronecode working groups here and higher level description here.)

There’s Always a Catch

Of course, this system isn’t perfect. It’s only as good as the data it uses, which is still pretty patchy worldwide, and the ways that the manufacturers implement those restrictions. Some drone makers may choose to treat any area five miles from an airport as a hard ban and prohibit all flight in that zone, even at the cost of furious customers who had no idea they were five miles from an airport when they bought that toy at Wal-mart (nor do they think it should matter, since it’s just a “toy”). Other manufacturers may choose to make a more graduated restriction for the sake of user friendliness, adding a level of nuance that is not in the FAA regulation. They might ban, say, flight one mile from an airport, but only limit flight beyond that to something like 150ft of altitude (essentially backyard-level flying).

That’s a reasonable first step. But the ultimate safe flight system would go a lot further. It would essentially extend the international air traffic control system to millions of aircraft (there are already a million consumer drones in the air) flown by everything from children to Amazon. The only way to do that is to let the drones regulate themselves (yes, let Skynet become self-aware).

Peer-to-peer Air Traffic Control

There’s a precedent for such peer-to-peer air traffic control: WiFI. Back in the 1980s, the FCC released spectrum in the 2.4 Ghz band for unlicensed use. A decade later, the first 802.11 standards for Wifi were released, which was based on some principles that have application to drones, too.

  1. The airspace used is not otherwise occupied by commercial operators
  2. The potential for harm is low (in the case of WiFi, low transmission power. In the case of drones, low kinetic energy due to the weight restrictions of the “micro” category)
  3. The technology has the capability to self-”deconflict” the airspace by observing what else is using it and picking a channel/path that avoids collisions.

That “open spectrum” sandbox that the FCC created also created a massive new industry around WiFi. It put wireless in the hands of everyone and routed around the previous monopoly owners of the spectrum, cellphone carriers and media companies. The rest was history.

Quadcopter ThumbWe can do the same thing with drones. Let’s create an innovation “sandbox” with de minimus regulatory barriers for small UAVs flying within very constrained environments. The parameters of the sandbox could be almost anything, as long as they’re clear, but it should be kinetic energy and range based (a limit of 2kg and 20m/s at 100m altitude and 1,000m range within visual line of sight would be a good starting point).

As in the case of open spectrum, in relatively low risk applications, such as micro-drones, technology can be allowed to “self-deconflict the airspace” without the need for monopoly exclusions such as exclusive licences or regulatory permits. How? By letting the drones report their position using the same cellphone networks they used to get permission to fly in the first place. The FAA already has a standard for this, called ADS-B, which is based on transponders in each aircraft reporting their position. But those transponders are expensive and unnecessary for small drones, which already know their position and are connected to the cloud. Instead, they can use “virtual ADS-B” to report their position via their cell network connections, and that data can be injected into the same cloud data services they used to check if their flight was safe in the first place.

Once this works, we’ll have a revolution. What WiFi did the telecoms industry, autonomous, cloud-connected drones can do to the aerospace industry. We can occupy the skies, and do it safely. Technology can solve the problems it creates.

About the Author

judge-thumb-AndersonChris Anderson (@Chr1sa) is the CEO of 3D Robotics and founder of DIY Drones. From 2001 through 2012 he was the Editor in Chief of Wired Magazine. Before Wired he was with The Economist for seven years in London, Hong Kong and New York.

The author of the New York Times bestselling books The Long Tail and Free as well as the Makers: The New Industrial Revolution.

His background is in science, starting with studying physics and doing research at Los Alamos and culminating in six years at the two leading scientific journals, Nature and Science.

In his self-described misspent youth [Chris] was a bit player in the DC punk scene and amusingly, a band called REM. You can read more about that here.

Awards include: Editor of the Year by Ad Age (2005). Named to the “Time 100,” the newsmagazine’s list of the 100 most influential people in the world (2007). Loeb Award for Business Book of the Year (2007). Wired named Magazine of the Decade by AdWeek for his tenure (2009). Time Magazine’s Tech 40 — The Most Influential Minds In Technology (2013). Foreign Policy Magazine’s Top 100 Global Thinkers (2013).

Being Picked up by a Swarm of Drones May Become Reality

In case you haven’t seen it yet, this video has been taking the internet by storm. The YouTube user [Gasturbine101] has successfully taken flight in his home made multi-rotor flying machine.

It’s a massive array of high powered brushless motors with props, fifty-four in fact, all counter-rotating. It has a weight of 148kg (we assume this includes the inventor), and produces a maximum lift of 164kg. Apparently it’ll even last for about 10 minutes. The props are grouped into six, using Hobbyking stabilizers to balance the flight.

He calls it the Swarm.

Continue reading “Being Picked up by a Swarm of Drones May Become Reality”

How to Rescue Your Quadcopter from a Tree

Whether it’s a new rocket, your latest quadcopter, or [Charlie Brown]’s kite, it always seems like there’s a tree waiting to catch and eat airborne projects. Sometimes you get lucky and find a way to climb up the tree to retrieve your wayward build, but most times you’re reduced to looking for rocks or sticks to fling up there in an attempt to shake it loose. But if you want to improve your chances of getting your stuff back, [U.S. Water Rockets] has a build for a retrieval tool made mostly from scrap bin parts that will help.

All you need is some PVC tubing, an old fishing reel and line, some latex surgical tubing, and a few dowels for projectiles. You can tell everything about the build from the BOM and stills, but the video after the break gives detailed instructions and shows it in action. Adding some fins to the dart or even substituting a cheap arrow from the sporting goods department of your favorite retailer might help with your aim. Even without fletching, the accuracy of the launcher is pretty good, and the range isn’t half bad either. Once the fishing line is over the branch that ate your quad it can be used to haul up successively stouter ropes, and pretty soon you’ll be shaking the tree like a boss.

Even if getting stuff out of trees isn’t on your immediate to-do list, this little hack could be put to other uses. Hams will use it to loft antennas up into trees, and tag-line placement for tree removal could be simplified with this tool. But if you still find yourself needing to retrieve stuff, you might want to be proactive and make your aerial robot tree-proof. That still won’t eliminate the need for drone-on-drone rooftop rescues.

Continue reading “How to Rescue Your Quadcopter from a Tree”

Operation Drone Rescue

When [Harrison Howes] lost his Syma X5C drone on a neighbor’s roof, he thought all hope was lost. There was no easy access to get up there, and the neighbor wasn’t interested in him attempting a rescue. Months past, and [Harrison] got a new quad. And not just any quad — a DJI Phantom 3 Professional. It was time to attempt an aerial rescue operation!

Using some old coat hangers and some green painter’s tape for visibility, [Harrison] crafted two hooks to hang below the Phantom. He also tilted the FPV module straight down for maximum visibility of the rescue.

Set to the soundtrack of No Time for Caution by Hans Zimmer (from Intersteller), watch our hero deftly air lift his old quad off the roof and back to safety.

Continue reading “Operation Drone Rescue”

No, Mounting A Gun To A Quadcopter (Probably) Isn’t Illegal

Earlier this month, [Austin Haghwout] posted a video on YouTube of a remote controlled quadcopter armed with a semiautomatic handgun. While there are no details of this build, it’s safe to say any reasonably sized quadcopter could be armed in such a manner; just strap a pistol to the frame, add a servo, and connect the servo to the RC receiver. We don’t think this is the first time it’s been done, but has garnered the most attention.

There is nothing novel about mounting a handgun to a quadcopter. Anyone with any experience with RC flying could replicate this build, and the only interesting part of watching a video of a quad firing a gun is seeing how the flight controller reacts to the recoil. However, in the pursuit of the exploitation of a fear of technology, this video has gone viral.

The Verge calls it, ‘totally illegal’, while The Christian Science Monitor asks how it is legal. Wired posits it is, ‘most likely illegal,’ while CNET suggests, ‘surely this isn’t legal.’ In a rare break from reality, YouTube commentors have demonstrated a larger vocabulary than normal, calling the build, ‘felonious.’

With so many calling this build illegal, there should be someone who could point out the laws or regulation [Austin Haghwout] is violating. This information is surprisingly absent. In a Newsweek post, a representative from the Bureau of Alcohol, Tobacco, Firearms, and Explosives is quoted as saying:

“ATF has reviewed the video with local law enforcement and other federal agencies. It does not appear that the device violates any existing firearms regulations…”

The Associated Press reports no state laws were broken by [Austin]. With the BAFTE and Connecticut State Police both signing off on this build, the issue of jurisdiction becomes more pronounced. How, exactly, is a gun mounted on a quad illegal?

The answer, as with all things involving quadcopters, comes from the FAA. We could find no regulations explicitly banning handguns on remote controlled quadcopters, but of all stories and posts on [Austin]’s handiwork, this is the closest anyone has come to providing the framework for calling this build illegal:

No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in flight that creates a hazard to persons or property. However, this section does not prohibit the dropping of any object if reasonable precautions are taken to avoid injury or damage to persons or property.

-FAR Part 91 Sec. 91.15

That’s it. The closest anyone has come to providing a reason why a semiauto quadcopter is illegal: because the cartridge (and bullet), are ‘dropped’ from a quad. The Feds charging [Austin] with “dropping” a bullet from a quadcopter is like taking down [Al Capone] for Income Tax Evasion. The difference being that [Al] was a notorious criminal who had obviously harmed a large swath of people and [Austin] doesn’t seem to be harming anyone.

Although [Austin]’s video of a gun toting quad is only fourteen seconds long, a few reasonable assumptions can be made about his small experiment in flying firepower. The video shows the quad hovering a few feet above the ground. This is surely allowed by the recently published safety guidelines for sUAS users. The gun itself appears to be firing into an offscreen hillside – a sensible precaution. If the only justification for the FAA’s investigation of [Austin]’s video is FAR 91.15, he’s on easy street.

“Drones” Endanger Airborne Wildfire Fighting

usdaThere is no denying that personal drones are in the public eye these days. Unfortunately they tend to receive more negative press than positive. This past weekend, there were news reports of a wildfire in California. Efforts to fight the fire were hampered when no less than five drones were spotted flying in the area. Some reports even stated that two of the drones followed the firefighting aircraft as they returned to local airports. This is the fourth time this month firefighting planes have been grounded due to unmanned aircraft in the area. It’s not a new problem either, I’ve subscribed to a google alert on the word “Drone” for over a year now, and it is rare for a week to go by without a hobby drone flying somewhere they shouldn’t.

The waters are muddied by the fact that mass media loves a good drone story. Any pilotless vehicle is now a drone, much to the chagrin of radio control enthusiasts who were flying before the Wright brothers. In this case there were two fields relatively close to the action – Victor Valley R/C Park, about 10 miles away, and the Cajun Pass slope flying field, which overlooks the section of I-15 that burned. There are claims on the various R/C forums and subreddits that it may have been members from either of those groups who were mistaken as drones in the flight path. Realistically though, Victor Valley is too far away. Furthermore, anyone at the Cajun pass flying site would have been fearing for their own safety. Access requires a drive through 3 miles of dirt road just to reach the site. Not a place you’d want to be trapped by a wildfire for sure. Who or whatever was flying that day is apparently lying low for the moment – but the problem persists.

Rules and Regulations

In the USA, the FAA rules are (finally) relatively clear for recreational drone operations. The layman version can be found on the knowbeforeyoufly.org website, which was put together by the Academy of Model Aeronautics (AMA), The Association for Unmanned Vehicle Systems International (AUVSI), and other groups in partnership with the FAA.

Continue reading ““Drones” Endanger Airborne Wildfire Fighting”

Send In The Drones: Putting Wheels And Wings On The Internet Of Things

Imagine you’re a farmer trying to grow a crop under drought conditions. Up-to-the-minute data on soil moisture can help you to decide where and when to irrigate, which directly affects your crop yield and your bottom line. More sensors would mean more data and a better spatial picture of conditions, but the cost of wired soil sensors would be crippling. Wireless sensors that tap into GSM or some sort of mesh network would be better, but each sensor would still need power, and maintenance costs would quickly mount. But what if you could deploy a vast number of cheap RFID-linked sensors in your fields? And what if an autonomous vehicle could be tasked with the job of polling the sensors and reporting the data? That’s one scenario imagined in a recent scholarly paper about a mobile Internet of Things (PDF link).


In the paper, authors [Jennifer Wang], [Erik Schluntz], [Brian Otis], and [Travis Deyle] put a commercially available quadcopter and RC car to the hack. Both platforms were fitted with telemetry radios, GPS, and an off-the-shelf RFID tag reader and antenna. For their sensor array, they selected passive UHF RFID tags coupled to a number of different sensors, including a resistance sensor used to measure soil moisture. A ground-control system was developed that allowed both the quad and the car to maneuver to waypoints under GPS guidance to poll sensors and report back.

Beyond agriculture, the possibilities for an IoT based on cheap sensors and autonomous vehicles to poll them are limitless. The authors rightly point out the challenges of building out a commercial system based on these principles, but by starting with COTS components and striving to keep installed costs to a minimum, we think they’ve done a great proof of concept here.