Vinduino: Full Irrigation With 25% Less Water

Irrigation is a fairly crude practice. Sure, there are timers, and rain sensors, but all in all we’re basically dumping water on the ground and guessing at the right amount. [Reinier van der Lee] wanted a better way to ensure the plants in his vineyard are getting the right amount of water. And this is Goldilocks’ version of “right”, not too little but also not too much. Southern California is in an extreme/exceptional drought. Water costs a lot of money, but it is also scarce and conservation has a wider impact than merely the bottom line.

His solution is the Vinduino project. It’s a set of moisture sensors that work in conjunction with a handheld device to measure the effect of irrigation. Multiple moisture sensors are buried at different depths: near the surface, at root level, and below root level. This lets you know when the water is getting to the root system, and when it has penetrated further than needed. The project was recognized as the Best Product in the 2015 Hackaday Prize, and [Reinier] presented the project during his talk at the Hackaday SuperConference. Check out the video of that talk below, and join us after the break for a look at the development of this impressive product.

Continue reading “Vinduino: Full Irrigation With 25% Less Water”

First Plasma In The World’s Largest Stellerator

If you’re looking for the future of humanity, look no further than the first plasma generated in the Wendelstein 7-X Stellerator at the Max Planck Institute for Plasma Physics. It turned on for the first time yesterday, and while this isn’t the first fusion power plant, nor will it ever be, it is a preview of what may become the invention that will save humanity.

A glimpse of plasma in side the Stellerator
A glimpse of plasma in side the Stellerator

For a very long time, it was believed the only way to turn isotopes of hydrogen into helium for the efficient recovery of power was the Tokamak. This device, basically a hollow torus lined with coils of wire, compresses plasma into a thin circular string. With the right pressures and temperatures, this plasma will transmute the elements and produce power.

Tokamaks have not seen much success, though, and this is a consequence of two key problems with the Tokamak design. First, we’ve been building them too small, although the ITER reactor currently being built in southern France may be an exception. ITER should be able to produce more energy than is used to initiate fusion after it comes online in the 2020s. Tokamaks also have another problem: they cannot operate continuously without a lot of extraneous equipment. While the Wendelstein 7-X Stellerator is too small to produce a net excess of power, it will demonstrate continuous operation of a fusion device. [Elliot Williams] wrote a great explanation of this Stellerator last month which is well worth a look.

While this Stellerator is just a testbed and will never be used to generate power, it is by no means the only other possible means of creating a sun on Earth. The Polywell – a device that fuses hydrogen inside a containment vessel made of electromagnets arranged like the faces of a cube – is getting funding from the US Navy. Additionally, Lockheed Martin’s Skunk Works claims they can put a 100 Megawatt fusion reactor on the back of a truck within a few years.

The creation of a fusion power plant will be the most important invention of all time, and will earn the researchers behind it the Nobel prize in physics and peace. While the Wendelstein 7-X Stellarator is not the first fusion power plant, it might be a step in the right direction.

Shark vs. Robot

In laymen’s terms they built a shark-chasing robot. You can guess what happened next…

The back story is a little more reputable. I recently attended the Center for Marine Robotics meeting at the Woods Hole Oceanographic Institution (WHOI) and learned about a very interesting robot. For the Discovery Channel’s Shark Week the network partnered with [Amy Kukulya] at WHOI to develop an autonomous underwater vehicle (AUV) that locates, follows, and films sharks in their natural habitats, swimming, patrolling, doing their thing.

Continue reading “Shark vs. Robot”

Wireless Water Meter Monitor Watches Waste

It’s no secret that hackers like to measure things. Good numbers lead to good decisions, like when to kick your wastrel teenager out of a luxuriously lengthy shower. Hence the creation of this wireless Arduino-based water meter interface.

We’ll stipulate that “wireless” is a bit of a stretch. Creator [David Schneider] chose to split the system into two parts – a magnetometer and an Arduino to sense impulses from the water company meter, and a Raspberry Pi to serve the web interface. The water meter is at the street rather than in his house, so the sensor is wired to the Pi with some telephone cable. But from there the system is wireless.

[David] goes into some good detail on the sensing problem he faced, which relies on detecting the varying magnetic field due to the spinny-bits inside the flowmeter and cleaning up the signal with the Arduino; he also addresses aliasing errors that occur when flow rate approaches the sampling rate of the magnetometer.

We like the fact that there’s a lot of potential to leverage this technique to monitor other processes with rotating magnetic fields. And like this optically coupled gas-meter monitor, it’s not invasive of the utility’s equipment either, which is a plus.

[via reddit]

Airport Land Art is (Acoustic) Baffling

According to an article in the Smithsonian magazine, these geometrically arranged hills aren’t landing signs for extra-terrestrials, but instead effectively sound baffles worked into the ground behind a runway at Amsterdam’s Schipol airport.

Photo by Alexis Glass, via Wikipedia
Photo by Alexis Glass, via Wikipedia

The 80 acres of hills and valleys are called the Buitenschot ‘land art park’ and supposedly reduce noise in the nearby neighborhood by around 50%. They work by sending the reflections in random directions that would otherwise skip off of the ground, just like anti-echo baffles in a sound studio. A nice touch for the local residents, they also contain jogging trails.

People have made land art before — we particularly like Spiral Jetty in the Great Salt Lake — but as far as we know this is the first land art “piece” that’s also functional.

Beauty is in the eye of the beholder, of course. Unfortunately, as the Smithsonian notes, nobody is beholding it. Because Buitenschot aims to diffuse the takeoff noise coming out of the rear of the planes, they are always flying away from it; passengers don’t get to see it from the air.

Physics You’ve Never Heard Of Provides Power From Waves

“In the future, we’ll be generating a significant fraction of our electricity from harnessing the waves!” People have been saying this for decades, and wave-generated electricity is not a significant fraction of an ant’s poop. It’d be fantastic if this could change.

If you believe the owners of Oscilla Power, the main failing of traditional wave-power generators is that they’ve got too many moving parts. Literally. Metal mechanical parts and their seals and so on are beaten down by sun and salt and surf over time, so it’s expensive to maintain most of the generator designs, and they’re just not worth it.

Oscilla’s generator, on the other hand, has basically no moving parts because it’s based on magnetostriction, or rather on inverse magnetostriction, the Villari effect. Which brings us to the physics.

Magnetostriction_by_ZureksMagnetostriction is the property that magnetic materials can shrink or expand just a little bit when put in a magnetic field. The Villari effect (which sounds much cooler than “inverse magnetostriction”) is the opposite: magnetic materials get more or less magnetic when they’re squeezed.

mpv-shot0001So to make a generator, you put two permanent magnets on either end, and wind coils around magnetostrictive metal bars that are inside the field of the permanent magnets. Squeeze and stretch the bars repeatedly and the net magnetic field inside the coils changes, and you’re generating electricity. Who knew?

Right now, according to The Economist Magazine’s writeup on Oscilla, the price per watt isn’t quite competitive with other renewable energy sources, but it’s looking close. With some more research, maybe we’ll be getting some of our renewable energy from squeezing ferrous bars.

And while we’re on the topic, check out this recent article on magnets, and how they work.

Optimizing Crop Yield With IoT

For a recent hackathon, a group of strangers (now friends!) created Crop Squares — a system designed to optimize crop yield by better tracking weather and soil conditions.

The event was hosted in Madrid called Future Hacks Internet of Things Edition, with the goal to build disruptive IoT solutions to help change the world. In 54 hours.

The concept behind crop squares is to make a graphical user interface using Dizmo that clearly shows the status of your crops in a grid system. For the prototype they used an Arduino Pro Mini with moisture sensors in potted plants to detect moisture levels, while a Raspberry Pi also collected weather data for the area being watched. The Arduino used an ESP8266 WiFi module to transmit the data remotely. To demonstrate how the system could be used in an automated sense, they hooked up another Arduino (this time a Leonardo), to pour water once the moisture levels dropped below a certain threshold.

Crop Squares won the Best Pitch Award as well as the Best Integration of Dizmo — good job guys!

Speaking of moisture sensors — did you know you can build your own using some plaster of paris and nails?