The Tree of 40 Fruit

tree40fruit

[Sam Van Aken] is working on a long-term project which literally will bear fruit. Forty different kinds, in fact. The Tree of 40 Fruit is a single tree, carefully grafted to produce 40 different varieties of fruit. Growing up on a farm, [Sam] was always fascinated by the grafting process – how one living plant could be attached to another.

In 2008, [Sam] was working as a successful artist and professor in New York when he learned a 200-year-old state-run orchard was about to be demolished. The stone fruit orchard was not only a grove a trees, but a living history of man’s breeding of fruit. Many unique varieties of stone fruit – such as heirloom peaches, plums, cherries, and apricots –  only existed in this orchard.

[Sam] bought the orchard and began to document the characteristics of the trees. Color, bloom date, and harvest date were all noted in [Sam's] books. He then had the idea for a single tree which would bear multiple types of fruit. By using grafting techniques such as chip grafting, [Sam] was able to join the varieties of stone fruit tree. The process was very slow going. Grafts performed one year must survive through the winter before they grow the following spring.

Throughout the process, [Sam] kept careful diagrams of each graft. He planned the tree out so the fruit harvest wouldn’t be boring. Anyone who has a fruit tree tends to give away lots of fruit – because after a couple of weeks, they’re sick of eating one crop themselves! With [Sam's] tree, It’s possible to have a nectarine with breakfast, a plum with lunch, and snack on almonds before dinner,  all from the same tree. The real beauty is in the spring. [Sam's] tree blossoms into an amazing array of pinks, purples and whites. A living sculpture created by an artist with a bit of help from Mother Nature.

Click past the break for [Sam's] TED talk.

[Read more...]

Red Bull Creation Winners: Maker Twins

This year’s Red Bull Creation theme “Reinvent the Wheel” was pretty broad, but the Maker Twins managed to incorporate it quite closely with their winning project which was completed in under 72 hours. They took the idea of urban farming and figured out one way to make farmer’s markets more feasible by helping to eliminate waste and spruce up the presentation of the produce.

The project amounts to a Ferris wheel. Instead of passenger compartments there are modular crates which are built with one wooden pallet each. The wheel itself is chain-driven and allows the system to track where each crate is in the rotation. This data is leveraged for a couple of different uses. One lets the customer select their produce on a tablet app and the crate will rotate into position so they may pick the individual items they want. The machine will also take care of automated watering to ensure the produce on display doesn’t get dried out. The icing on the cake is a separate station for washing and cutting the purchased veggies.

Thank you to Maker Twins for contributing some demonstration “b-roll” for use in this video.

Hey There Little Plant. Let’s Be Friends!

poster_01_01

Perhaps, you’re circle of friends is getting too small. Or maybe, you just want to communicate with the leafy, green beings that have rooted themselves in the soil inside your house. If so, this environmental monitoring system will be perfect for you!

Created by [Dickson], this project monitors soil moisture, air temperature, and air humidity of your indoor plants and will alert you via email and SMS when your plants are thirsty. No longer will your sprouts shrivel up in the sun, but rather, they will be well-hydrated ready to produce their veggie goodness.

The system is battery operated, wireless, Arduino and Raspberry Pi based and comes with an Android app, which in turn allows you to view real-time and historical data, thus giving you the option to check in on your crew of Chlorophyll-embedded friends.

3116051405904844105

Let’s look at the sensors which are at work on the project.

[Read more...]

Solar Powered DIY Plant Watering System

Solar Powered Watering System

It’s great having fresh vegetables just a few steps away from the kitchen, but it takes work to keep those plants healthy. [Pierre] found this out the hard way after returning from vacation to find his tomato plant withering away. He decided to put an end to this problem by building his own solar-powered plant watering system (page in French, Google translation).

An Arduino serves as the brain of the system. It’s programmed to check a photo resistor every ten minutes. At 8:30PM, the Arduino will decide how much to water the plants based on the amount of sunlight it detected throughout the day. This allows the system to water the plants just the right amount. The watering is performed by triggering a 5V relay, which switches on a swimming pool pump.

[Pierre] obviously wanted a “green” green house, so he is powering the system using sunlight. A 55 watt solar panel recharges a 12V lead acid battery. The power from the battery is stepped down to the appropriate 5V required for the Arduino. Now [Pierre] can power his watering system from the very same energy source that his plants use to grow.

DIY Hydroponic System Grows Herbs on the Wall

Wall-Mounted Hydroponic Garden

Everyone knows that you should eat healthy, but it’s not always easy. Fresh and healthy foods are often more expensive than processed foods. When money is tight, sometimes it’s best to just grow your own produce. What if you don’t have room for a garden, though?

When [Matthew] returned home from the 2014 San Mateo Maker Faire, he found himself in a similar situation to many other faire attendees. He saw something awesome and was inspired to build it himself. In this case, it was a wall-mounted hydroponic garden. [Matthew] started out with some basic requirements for his project. He knew which wall he wanted to cover with plants, so that gave him the maximum possible dimensions. He also knew that they may have to remove the garden temporarily to perform maintenance on the wall in the future. And as for what to grow, [Matthew] loves lots of flavor in his foods. He chose to grow herbs and spices.

[Matthew] purchased most of the main components from Amazon and had them shipped to his doorstep. Everything else was found at the local hardware store. The base of the build is an off-the-shelf planter box. The drainage hole in the bottom was plugged up to prevent water from leaking out. A different hole was drilled in the side of the box to allow a garden hose to be mounted to the box. The hose is connected through a float valve, keeping the water level inside the box just right.

[Matthew] then built a frame out of dimensional lumber. The frame ended up being about 4.33 feet wide by 8 feet tall. The boards were fastened together with metal braces and mounting plates. A full sheet of plywood was then nailed to the front of the frame. Thick plastic sheet was then wrapped around the frame and stapled in place.

[Matthew] purchased giant planter pockets to actually hold the plants. He tried stapling them to the front of the frame, but discovered that staples were not strong enough to hold the weight of the plants, soil, and water. He instead used screws and washers.

Next, a submersible pump was mounted inside the bottom planter box. This pump is used to circulate the water and nutrients up to the plants above. Two hoses were connected to the pump and run up the sides of the upper frame. These hoses evenly distribute the water to the plants.

The final step was to mount the unit in place against the wall. [Matthew] didn’t want to screw into the wall and cause any damage. Instead, he placed a couple of bricks inside of the planter box and rested the bottom of the frame on top of those. The top of the frame is essentially hung from a railing up above with some thin steel wire.

The whole unit looks very slick and takes up little space. With some more ingenuity, one could likely build something similar with even more DIY components to save some more money.

DIY Coffee Maker Filters Out Manufacturer Specificity

Coffeemaker made from 3D-printed parts and scrap aluminium

This DIY electric coffeemaker prototype uses an assemblage of 3D-printed parts and cast aluminium. [siemenc]‘s main goal with this project was to utilize and demonstrate recycling and re-usability. He used Filabot filament exclusively and melted down scrap aluminium such as cans, foil, and CNC mill waste in an oven he fashioned from an old fire extinguisher. He also cast the aluminium parts himself from 3D-printed positives.

Of course, he had to buy the things that make this a coffeemaker such as the hoses, the fuse, and the heating element. If you’re wondering why he didn’t salvage these parts from yard sale machinery, it’s because he wanted to be able to replace any part of it and have it last as long as he needs it to last. The innards he used are not specific to any model, so he should be able to easily find a replacement.

Just like a pour over set up, [siemenc] has fine control over the strength and quantity of the brew. We particularly like this machine’s exotic bird looks as well; it may be a prototype, but it’s quite stylish. If you’re looking to go all the way with DIY coffee, why not grow your own beans and then roast the beans yourself?

 

Home Made Cargo Bicycle Makes Use of Scraps!

Recycled DIY Bicycle!

Ever heard of a cargo bike? If you need to carry a lot of stuff around (or maybe even your kid!), then they’re super handy — unfortunately, they aren’t exactly cheap — or common. So you could just make your own…

[Matthew Venn] was inspired by Tom’s cargo bikes, recently featured in issue 12 of Boneshaker magazine. He collected a few scrap bicycles, some steel, and started fabrication — lucky for him, his friend [Eric] has a full metal working shop complete with plasma cutting, MIG welding, and a lathe.

They started by cutting the front end of the bicycle off and replacing it with a much longer steering column. This connects to the only new part they had to buy — a pair of Ford Escort tie rods, which allow you to steer the tiny front wheel. They continued welding the rest of the frame together, testing it as they went — once satisfied with its handling (it still needs brakes) they built the cargo platform and called it a day.

There’s a complete gallery of the process over on [Matthew's] Flickr, so if you’re hoping to make your own, take a gander!

Follow

Get every new post delivered to your Inbox.

Join 91,872 other followers