Energy harvesting to build a Carbon Monoxide Detector with no battery

no-battery-carbon-monoxide-detector

There are a few devices that work tirelessly to protect our lives. We’re talking about smoke detectors and carbon monoxide detectors. Increasingly these either need to be hardwired into the home, or have a sealed battery which is good for ten years (in the case of smoke detectors). [Gelmi] recently had to change the battery in his Carbon Monoxide detector — which happens very rarely — and he it got him to thinking. If the batteries need to be changed so rarely, how hard would it be to harvest energy to power the device?

Our first thought was that he’d use inductance like those spy birds which perch on power lines. But instead he went for the heat lost from using the hot water spigot. Above you can see his test rig which attached a Peltier device to the faucet in his bathroom. Whenever you turn on the hot water the faucet also heats up. The differential between faucet temperature and ambient room temperature generates a small amount of power. This is a suitable source, but only if he could also cut the amount of power needed by the detector. This adventure takes him down the rabbit hole, learning about how the sensors work and designing for reliability at the lowest consumption level possible.

The faucet application might seem peculiar. But if you use a natural gas water heater you want a carbon monoxide detector near it. Attach the Peltier to the outflow and every time any hot water tap in the house is opened your system will get a bit of a recharge.

[Read more...]

Goal Zero Bolt hack lets your flashlight use non-proprietary batteries

goal-zero-bolt-modification

[Harrson] was really excited to get a deal on this Goal Zero Bolt flashlight. It’s and LED flashlight that uses Lithium batteries that are recharged via USB. That’s really handy. But when he cracked it open, like any good hacker does with new toys, he found that it won’t charge standard 18650 Lithium cells. That’s the form factor it’s using, but the proprietary cell that comes with it has both conductors at the top.

So where did [Harrson] start with the project? He called the company to ask about the setup. They were able to confirm that the proprietary cells just have a conductor which brings the bottom contact of the cell up to the top. We’d bet this is to make the flashlight itself easier to manufacture.

He got to work by scavenging a flat Kapton covered conductor from an old laptop battery. This thin strip is manufactured for connecting the cells of a battery, and it’s quite flat so it will be able to bypass the 18650 cell housing inside of the battery compartment. He made a solder connection for the strip inside the recharging compartment, leaving a tail which makes contact with the base of a standard cell.

If you’ve ever cracked open a dead laptop battery you probably found round Lithium cells. These are most commonly the 18650 variant we’ve been talking about. The battery dies when just one cell goes bad, so [Harrson] has a supplies of the good cells which he’ll be able to substitute into his flashlight as needed.

Plastic bottles funnel rain into rain barrels

plastic-bottle-downspout

This is [Wombling's] no-cost solution to getting rain from his gutters into a rain barrel. It is literally just a bunch of plastic water bottles chained together. At one end he uses the original cap with some holes punched in it as a sieve.

We like the concept, but find the execution a bit dubious. In heavy rain the holes in the cap will not be able to keep up and we figure your gutters are going to overflow. That may be okay depending on the grade of your landscaping, but those who value keeping their basement dry should avoid this route.

Just a bit of improvement could change all that though. We suggest making the rain barrel the sieve. Add a bowl shape to the lid with a large piece of screen in the bottom to filter out debris. Then form some type of spout on the front side of the lid to channel overflow away from the house.

The amount of waste generated by bottled water has always troubled us, which is part of the reason we featured this. We also liked seeing those plastic bottle skylights, and could swear we featured a floating plastic bottle island built in the ocean but couldn’t find the link. If you know what we’re talking about leave the goods in the comments section.

Gas, Water, and Electricity monitoring

???????????????????????????????

From the look of this you can tell that [Jasper Sikken] has some pretty interesting stuff going on to monitor the utilities in his home. But it’s important to note that this is a rental home. So adding sensors to the gas, water, and electric meters had to be done without making any type of permanent changes.

The module above is his own base PCB which accepts an mbed board to harvest and report on usage. His electric meter has an LED that will flash for every Watt hour that is used. He monitors that with a light dependent resistor, crafting a clever way to fasten it to the meter using four magnets. The water meter has a disc that makes one revolution for each liter of water that passes through it. Half of the disc is reflective so he uses a photoreflective sensor to keep track of that. And finally the gas meter has a reflective digit on one of the wheels. The sensor tracks each time this digit passes by, signifying 10 liters of gas used. He also monitors temperature which we’re sure comes in handy when trying to make sense of the data.

[Thanks Stephen]

 

Raspberry Pi automates your tomato farm

rpi-tomato-farming

Check out the tomato plants [Devon] grew using a monitoring system he built himself. It’s based around a Raspberry Pi. As far as grow controllers go it falls a bit short of full automation. That’s because the only thing it can actuate is the black water line seen hovering above the plants. But [Devon's] work on monitoring and collecting sensor data should make it easy to add features in the future.

The moisture sensors pictured above monitor the soil in which the plants are growing. But he also has temperature and light sensors. These are very important when growing from seed and could be used in conjunction with a heating mat for plants that require higher soil temperatures (like pepper plants). The tomatoes are also pretty leggy. Now that he’s monitoring light levels it would be good to augment the setup with a grow light. A long term goal could even be a motorized bed which could raise the plants right up to the bulbs so they don’t reach for the light.

Don’t let the stars in our eyes distract you though. He’s done a ton of work on the project both with the physical build, and in plotting the data collected by the system. Great job!

[Read more...]

Giving a crank flashlight a super capacitor overhaul

crank-flashlight-supercap-overhaul

[Caleb] was given a tiny LED flashlight which has a crank used to charge it. Unfortunately it wasn’t holding a charge, and constant cranking didn’t work very well either. He cracked it open to find a single lithium button cell. Instead of using a drop-in replacement he soldered in his own super capacitor.

The stock device is remarkably simple. It uses a standard DC motor as the generator. It’s connected to the crank using a set of gears, with the two red wires seen above connecting it to the control board. Four diodes make up a bridge rectified and apparently feed directly into the battery. No wonder that cell went kaput!

But this orientation isn’t bad for using capacitors. They can be charged directly and the switch which attaches the LEDs to voltage doesn’t interfere with their operation. The last problem was making room for them in the case. [Caleb] considered a few different approaches, but ended up just heating the plastic enclosure until it could be deformed to make room for the additional parts.

Solar powered hovercraft

SONY DSC

It looks a little bit like an octocopter, but this solar-powered hovercraft is distinctly different from its free-flying brethren. It depends mostly on ground effect for operation and to get it just a bit into the air you need a pretty large reflective rig nearby.

The vehicle needs to be even lighter than traditional quadcopters in order to function. It doesn’t carry any battery at all which presents a problem when trying to program the microcontroller board. For this it is connected to an external battery, which is removed before flight so that the control can be powered from the solar array.

What’s not shown in the image above is a mirror array used to focus more intense sunlight on the panels to bump up the available electricity. Not much is said about this, but there is one image on the project page which shows the creator standing in front of the set of four mirrors (perhaps sheets of mylar?) strung up between a couple of trees.

Alas, we couldn’t find a video of the aircraft in action. With such a delicate balsa wood frame we’re sure this thing is affected by every air current that passes its way.

[Thanks Laimonas]