DIY Coffee Maker Filters Out Manufacturer Specificity

Coffeemaker made from 3D-printed parts and scrap aluminium

This DIY electric coffeemaker prototype uses an assemblage of 3D-printed parts and cast aluminium. [siemenc]‘s main goal with this project was to utilize and demonstrate recycling and re-usability. He used Filabot filament exclusively and melted down scrap aluminium such as cans, foil, and CNC mill waste in an oven he fashioned from an old fire extinguisher. He also cast the aluminium parts himself from 3D-printed positives.

Of course, he had to buy the things that make this a coffeemaker such as the hoses, the fuse, and the heating element. If you’re wondering why he didn’t salvage these parts from yard sale machinery, it’s because he wanted to be able to replace any part of it and have it last as long as he needs it to last. The innards he used are not specific to any model, so he should be able to easily find a replacement.

Just like a pour over set up, [siemenc] has fine control over the strength and quantity of the brew. We particularly like this machine’s exotic bird looks as well; it may be a prototype, but it’s quite stylish. If you’re looking to go all the way with DIY coffee, why not grow your own beans and then roast the beans yourself?

 

Home Made Cargo Bicycle Makes Use of Scraps!

Recycled DIY Bicycle!

Ever heard of a cargo bike? If you need to carry a lot of stuff around (or maybe even your kid!), then they’re super handy — unfortunately, they aren’t exactly cheap — or common. So you could just make your own…

[Matthew Venn] was inspired by Tom’s cargo bikes, recently featured in issue 12 of Boneshaker magazine. He collected a few scrap bicycles, some steel, and started fabrication — lucky for him, his friend [Eric] has a full metal working shop complete with plasma cutting, MIG welding, and a lathe.

They started by cutting the front end of the bicycle off and replacing it with a much longer steering column. This connects to the only new part they had to buy — a pair of Ford Escort tie rods, which allow you to steer the tiny front wheel. They continued welding the rest of the frame together, testing it as they went — once satisfied with its handling (it still needs brakes) they built the cargo platform and called it a day.

There’s a complete gallery of the process over on [Matthew's] Flickr, so if you’re hoping to make your own, take a gander!

A Low Cost, Solar-Powered Swamp Cooler

A looming, torturous summer is preparing to bear down on many of us, making this dirt-cheap swamp cooler build an attractive hack to fend off the heat.

Though this is a pretty standard evaporative cooler, the design comes together in a tidy and transportable finished product. The base is a ~$3, 5-gallon bucket from a local hardware store with its accompanying Styrofoam liner. Three 2 1/8″ holes carved into the side of both the bucket and liner will snugly fit some inch-and-a-half PVC pipe with no need for glue.

One last cut into the lid to seat a small desk fan rounds off this build—or you can chop into the styrofoam liner’s lid if you prefer. The video demonstrates using a 15W solar panel to run the fan, and we have to admit that the cooler seems to be an excellent low-cost build. It does, however, require a frozen gallon jug inside to pump out the chilled air for around 5-6 hours per jug. Maybe one of our frugal and mathematically-inclined readers can throw out some guesstimations for the cost of stocking the bucket with a jug of frozen water a couple times a day? Video after the jump.

Continue reading “A Low Cost, Solar-Powered Swamp Cooler”

Go On a Power Trip with Powerduino

powerduinoThings don’t always run the way we want them to or operate at the ideal temperature out of the box. Instead of spending extra for power controls that may or may not meet your needs, wouldn’t it make more sense to dial in the ideal level from the source? That’s what [dekuNukem] had in mind when he decided to make Powerduino, an arduino-compatible programmable power strip.

With Powerduino, [dekuNukem] can control the electrical consumption of all kinds of things without ever worrying about the irreversible deadliness of mains voltage. It actually uses a Teensy 3.1 which can be programmed with the Arduino IDE through the micro USB connector. He’s really tricked it out to the point of putting Kill A Watt meters to shame. A wi-fi module lets him control any of the outlets from anywhere, and the RTC module lets him make customized schedules for them. Powerduino has an SD card slot for logging energy consumption, and a 20 x 4 LCD screen makes it easy to directly interface with the power strip.

The Powerduino code is up on GitHub, and [dekuNukem]‘s walkthrough video is after the jump.

Continue reading “Go On a Power Trip with Powerduino”

Reusable Vacuum Bag Saves you Money

FTWP5L5FLROLXM5.MEDIUM

Vacuum dust bags are annoying. They’re expensive, one time use, and if you have an older vacuum cleaner, good luck finding replacements! [Karl] got fed up so he decided to make his own reusable dirt bag instead.

He’s using an old t-shirt as the new bag material but notes that you can use any other sufficiently drafty material as well — as long as it stops the dust but lets air through, you’re good! To seal the bag he’s using a piece of rubbery vinyl with a hole cut in it to seal against the intake pipe. This is sewn to the t-shirt with a piece of cardboard sandwiching the fabric. From there it’s just a matter of adding a zipper or Velcro, and you’re done!

He’s been using this filter for over a year and hasn’t had any problems with it yet — you can even wash it! While you’re at it, why not make a wet-spill attachment for your vacuum cleaner too?

 

Powering a RPi with Hydrogen

raspberryHy

Looking for a new way to power your Raspberry Pi? The raspberryHy project aims to develop a small fuel cell designed for powering the credit card sized computer. It adds a proton exchange membrane (PEM) fuel cell, a battery, and custom control electronics to the Pi.

The system takes hydrogen in from a compressed hydrogen cartridge and feeds it through a regulator. This passes the hydrogen into the PEM fuel cell at the correct pressure, and creates a potential. The control electronics boost that voltage up to the 5 V required on the Pi’s USB port. There’s also an electronically controlled purge valve which periodically exhausts the fuel cell.

There’s a few reasons you might want to run your Pi with hydrogen. Run time of the fuel cell is limited only by the amount of hydrogen you can store. In theory, you could connect a large cylinder for very long run times. Combined with a battery, this could be quite useful for running Pis in remote locations, or for long-term backup power. The raspberryHy will be presented at Hannover Fair 2014 this month.

Energy-Saving Fireplace Thermostat

[Andrian] has a boiler stove that heats water and sends it to a radiator. As the fireplace heats the water in a boiler a temperature sensor opens the a valve to send the warm water to the radiator. The radiator sends its cool water back to the boiler to be reheated. The valve is slow, so before the boiler can send all the water to the radiator, it’s getting cool water back causing the valve to close while the heat is built back up. To prevent the valve from working so hard and wasting energy, [Andrian] designed a better thermostat to control the valve operation.

The thermostat uses one LM85 temperature sensor to check the water in the boiler and another one for the ambient temperature. Once the boiler water reaches the desired temperature, the valve is opened via relay. The system waits for half an hour and then checks the boiler temperature again. The brains of this operation is an ATMega168 with a 32.768kHz crystal as the RTC. Code and PCB files are available in his repo.

We love to see these types of hacks that challenge the status quo and increase the efficiency of appliances. We applaud you, [Andrian], for turning your dissatisfaction into a positive plan of action and for sharing your experience with the rest of us!

If you want to up the eco-friendliness of heating water a bit, you could heat the water with a compost heap.