Finally, a Power Meter Without Nixies

We’ve had quite a spate of home-brew energy meters on the tip line these days, and that probably reflects a deep inner desire that hackers seem to have to quantify their worlds. Functionally, these meters have all differed, but we’ve noticed a distinct stylistic trend toward the “Nixies and wood” look. Ironically, it is refreshing to see an energy meter with nothing but a spartan web interface for a change.

Clearly, [Tomasz Salwach] had raw data in mind as a design goal, and his Raspberry Pi-based meter delivers. After harvesting current sensing transformers from a bucket of defunct power meter PC boards, [Tomasz] calibrated them with a DIY oscilloscope and wired them and the voltage sensors up to an STM32 Nucleo development board. Data from the MCU goes to the Pi for processing and display as snazzy charts and GUI elements served internally. [Tomasz] was kind enough to include a link to his meter in his tip line post, but asked that we not share it publicly lest HaD readers love the Pi to death. But we can assure you that it works, and it’s kind of fun to peek in on the power usage of a house in Poland in real time.

It’s a nice project that does exactly what it set out to do. But if you missed the recent spate of Nixie-based displays, check out this front hallway meter or this one for a solar-power company CEO’s desk.

Swiss Project Looking To Harness Kite Power

Switzerland has bought us many things: the cuckoo clock, cheese with holes in it, and.. kite power? That’s the idea of a Swiss project that is trying to tap the energy of a regular wind that blows between Lake Geneva and the Alps. The group hopes to build large kites that fly at about 150 meters above the ground, with a generator and other components on the ground. The way that this wind energy is converted into electricity is interesting: the kite is pulled up by the wind, spiraling higher and pulling the cable which drives the generator. Once it reaches a maximum height, the kite is trimmed so it sinks down to a lower altitude, and the kite is trimmed again to catch the wind and climb.

It’s a fascinating idea: by controlling the kites, the system could produce power on demand. As long as the wind is up, of course, but in this region of Switzerland, that isn’t an issue, as the wind is very predictable. It doesn’t require as much permanent infrastructure as a wind turbine, and kites are much more attractive than turbines. This makes us wonder if a system like this would be adaptable to a smaller scale: could you build a portable or off-grid system for hiking in windy areas that could charge a battery this way?

The project webpage hasn’t seen any updates since 2013, but the research project seems to still be alive and kicking. Anyone have any details or wild speculation?

(Related, but only tangentially, video of Thomas Dolby lip-synching below the break.)

Via The Bulletin of Atomic Scientists, thanks to [Austin Bentley]

Continue reading “Swiss Project Looking To Harness Kite Power”

Nixie Tubes Adorn Steampunk Solar Power Meter

The appeal of adding Nixie tube displays to a project seems to know no end. First it was Nixie clocks, now it’s Nixie power meters, with the latest addition being this Nixie-Steampunk hybrid solar power monitor.

We’re suckers for a project with a vintage look, and this one pushes all the buttons. Built on commission for a solar power company CEO’s office, [Paul Parry]’s build is based on a Depression-era Metropolitan-Vickers combined voltmeter and ammeter. The huge meters with mirrored scales and the rich wood of the case – our guess is that it’s mahogany – made a great starting point, and after some careful hole drilling, nine IN-18 Nixies were sprouting from the case. A strip of RGB LEDs below decks added the requisite backlighting of the envelopes, and a Raspberry Pi was enlisted to interpret data from the company’s solar farm and drive the tubes and the meters. The project was capped off with a new finish on the case and a couple of fancy brass plaques.

[Paul] sent us the tip for his build after seeing the last power meter we covered, and we have to say they’re both great looking and functional projects. Keep the Nixie projects coming!

Guerrilla Grafters Grow Great Gifts for Greater Good

If you’ve been to downtown San Francisco lately, you might have noticed something odd about the decorative trees in the city: they’re now growing fruit. This is thanks to a group of people called the Guerrilla Grafters who are covertly grafting fruit-bearing twigs to city tress which would otherwise be fruitless. Their goal is to create a delicious, free source of food for those living in urban environments.

Biology-related hacks aren’t something we see every day, but they’re out there. For those unfamiliar with grafting, it’s a process that involves taking the flowering, fruiting, or otherwise leafy section of one plant (a “scion”) and attaching them to the vascular structure of another plant that has an already-established root system (the “stock”). The Guerrilla Grafters are performing this process semi-covertly and haven’t had any run-ins with city officials yet, largely due to lack of funding on the city’s part to maintain the trees in the first place.

This hack doesn’t stop at the biological level, though. The Grafters have to keep detailed records of which trees the scions came from, when the grafts were done, and what characteristics the stock trees have. To keep track of everything they’ve started using RFID tags. This is an elegant solution that can be small and inconspicuous, and is a reliable way to keep track of all of one’s “inventory” of trees and grafts.

It’s great to see a grassroots movement like this take off, especially when it seems like city resources are stretched so thin that the trees may have been neglected anyway. Be sure to check out their site if you’re interested in trying a graft yourself. If you’re feeling really adventurous, you can take this process to the extreme.

Thanks to [gotno] for the tip!

Vinduino: Full Irrigation With 25% Less Water

Irrigation is a fairly crude practice. Sure, there are timers, and rain sensors, but all in all we’re basically dumping water on the ground and guessing at the right amount. [Reinier van der Lee] wanted a better way to ensure the plants in his vineyard are getting the right amount of water. And this is Goldilocks’ version of “right”, not too little but also not too much. Southern California is in an extreme/exceptional drought. Water costs a lot of money, but it is also scarce and conservation has a wider impact than merely the bottom line.

His solution is the Vinduino project. It’s a set of moisture sensors that work in conjunction with a handheld device to measure the effect of irrigation. Multiple moisture sensors are buried at different depths: near the surface, at root level, and below root level. This lets you know when the water is getting to the root system, and when it has penetrated further than needed. The project was recognized as the Best Product in the 2015 Hackaday Prize, and [Reinier] presented the project during his talk at the Hackaday SuperConference. Check out the video of that talk below, and join us after the break for a look at the development of this impressive product.

Continue reading “Vinduino: Full Irrigation With 25% Less Water”

First Plasma In The World’s Largest Stellerator

If you’re looking for the future of humanity, look no further than the first plasma generated in the Wendelstein 7-X Stellerator at the Max Planck Institute for Plasma Physics. It turned on for the first time yesterday, and while this isn’t the first fusion power plant, nor will it ever be, it is a preview of what may become the invention that will save humanity.

A glimpse of plasma in side the Stellerator
A glimpse of plasma in side the Stellerator

For a very long time, it was believed the only way to turn isotopes of hydrogen into helium for the efficient recovery of power was the Tokamak. This device, basically a hollow torus lined with coils of wire, compresses plasma into a thin circular string. With the right pressures and temperatures, this plasma will transmute the elements and produce power.

Tokamaks have not seen much success, though, and this is a consequence of two key problems with the Tokamak design. First, we’ve been building them too small, although the ITER reactor currently being built in southern France may be an exception. ITER should be able to produce more energy than is used to initiate fusion after it comes online in the 2020s. Tokamaks also have another problem: they cannot operate continuously without a lot of extraneous equipment. While the Wendelstein 7-X Stellerator is too small to produce a net excess of power, it will demonstrate continuous operation of a fusion device. [Elliot Williams] wrote a great explanation of this Stellerator last month which is well worth a look.

While this Stellerator is just a testbed and will never be used to generate power, it is by no means the only other possible means of creating a sun on Earth. The Polywell – a device that fuses hydrogen inside a containment vessel made of electromagnets arranged like the faces of a cube – is getting funding from the US Navy. Additionally, Lockheed Martin’s Skunk Works claims they can put a 100 Megawatt fusion reactor on the back of a truck within a few years.

The creation of a fusion power plant will be the most important invention of all time, and will earn the researchers behind it the Nobel prize in physics and peace. While the Wendelstein 7-X Stellarator is not the first fusion power plant, it might be a step in the right direction.

Shark vs. Robot

In laymen’s terms they built a shark-chasing robot. You can guess what happened next…

The back story is a little more reputable. I recently attended the Center for Marine Robotics meeting at the Woods Hole Oceanographic Institution (WHOI) and learned about a very interesting robot. For the Discovery Channel’s Shark Week the network partnered with [Amy Kukulya] at WHOI to develop an autonomous underwater vehicle (AUV) that locates, follows, and films sharks in their natural habitats, swimming, patrolling, doing their thing.

Continue reading “Shark vs. Robot”