Solar Camping on Steroids

solar battery (Large)

[Rick] does a lot of camping, but he loves his electronics. So he’s now on his third iteration of his solar-powered battery box, and it packs quite the punch!

It’s a pretty simple build, but very effective. [Rick] is using a 200W solar panel, a 20 Amp MPPT solar charge controller, a large 100Ah Military Spec Deka 6TMF deep cycle battery, three 12 volt car accessory outlets, and to box it all up — an inexpensive plastic tote from Walmart to keep it dry in bad weather. The only problem we can see with this is that since the battery isn’t a sealed gel cell, it could out gas inside the tote which might cause him problems down the road. He’s aware of this though so the lid is only on when it needs to be.

This unit can power pretty much anything that runs on 12 volts, from USB devices, to camping light batteries, air pumps for air mattresses, C-PAP machines via the included A/C inverter, and it can even run an EdgeStar FP-430 portable fridge/freezer for 3+ days before even needing to plug in the solar panel for recharging! Total system cost is a bit high at around $1000 — but that includes the portable fridge, solar panels, and all accessories and miscellaneous hardware that went into assembling the system.

Stick around after the break to see the video demonstration.

[Read more...]

Fully automated watering robot takes a big leap forward toward greenhouse automation

aquarius_robot

Greenhouse owners might find [David Dorhout]’s latest invention a groundbreaking green revolution! [David]’s Aquarius robot automates the laborious process of precision watering 90,000 square feet of potted plants. Imagine a recliner sized Roomba with a 30 gallon water tank autonomously roaming around your greenhouse performing 24×7 watering chores with absolute perfection. The Aquarius robot can do it all with three easy setups; add lines up and down the aisles on the floor for the robot to follow, set its dial to the size of your pots and maybe add a few soil moisture sensors if you want the perfect amount of water dispensed in each pot. The options include adding soil moisture sensors only between different sized plants letting Aquarius repeat the dispensing level required by the first plant’s moisture sensor for a given series.

After also digging through a pair of forum posts we learned that the bot is controlled by two Parallax propeller chips and has enough autonomous coding to open and close doors, find charging stations, fill its 30 gal water tank when low, and remember exactly where it left off between pit stops. We think dialing in the pot size could easily be eliminated using RFID pot identification tags similar in fashion to the Science Fair Sorting Project. Adjusting for plant and pot size as well as location might easily be automated using a vision system such as the featured Pixy a few weeks back. Finally, here are some featured hardware hacks for soil moisture sensing that could be incorporated into Aquarius to help remotely monitor and attend to just the plants that need attention: [Andy's] Garden sensors, [Clover's] Moisture control for a DIY greenhouse, [Ken_S's] GardenMon(itoring project)

[David Dorhout] has 14 years experience in the agriculture and biotech industry. He has a unique talent applying his mad scientist technology to save the future of mankind as seen with his earlier Prospero robot farmer. You can learn more about Aquarius’s features on Dorhout R&D website or watch the video embedded below.

[Read more...]

Compact fluorescent grow light

compact-fluorescent-grow-light

Spring is on the way for our friends down under. With that in mind [x2Jiggy] built this compact fluorescent grow lamp to help start the seeds for his garden. He used materials that are easy to find, and multiple bulbs means that you can mix and match their color warmth in order to get the wavelengths of light best for plant growth.

He started by building the box out of MDF. It is lined mostly with a reflector meant to go in your car’s windshield when you leave it in a hot parking lot. He sealed the seams of the reflector using what he calls flashing tape. This is the rubbery type of stuff used as soft flashing around windows.

The bulb sockets came from an old string of party lights. Wiring is run through plastic junction boxes which keeps the setup code-compliant. Each of the CFLs draw 20 Watts for a total consumption of 160 Watts. Combine this with a DIY hydroponic tent and you’ll be eating fresh greens year round.

[Read more...]

Preserve your garden bounty with a solar food drier

solar-food-drier

The [VelaCreations] family lives off the grid, getting the electricity that they actually use from solar and wind power. When they started looking for ways to preserve the fruit and vegetables now coming into harvest the electricity consumption and cost of a food dehydrator made them balk. What they do have plenty of at this time of year is sun and heat, so they built their own solar food drier.

The frame is made of welded square tube. They mention that you will have to alter it if you don’t have welding tools, but building your own MOT welder is just one more fun project to take on. The frame has wood rails to hold the trays of food. It is enclosed with translucent polycarbonate sheets. There is a vent in the top as well as the bottom. As the heat from the sun builds inside, it flows upward, sucking fresh air in the bottom. This carries away moisture from the food and can be regulated by adjusting the size of the bottom vent.

Hack VersaPak battery modules to reuse laptop cells

retrofit-battery-packs-with-laptop-cells

If you’re familiar with VersaPak tools you’ll note that while the battery pack in this image looks somewhat familiar, it’s not supposed to have a removable cell. This is [Martin Melchior's] hack to use laptop 18650 Lithium cells with VersaPak tools.

The original NiCad packs used three cells for a total of 3.6V, so it is possible to substitute a Lithium cell in the same voltage neighorhood. The tools are pretty hard on the battery packs, drawing a lot of current in certain situations. But these cells are being harvested from dead laptop battery packs so it’s not a huge concern if their life is a bit shortened.

The hack places an 18650 battery receptacle inside of the VersaPak battery housing. There’s a bit of careful disassembly to get to this point, but it’s well illustrated in [Martin's] project log. And of course you’ll need to use a proper Lithium battery charger from here on out.

This form factor has been popping up in a lot of hacks lately. Here’s another one that modifies the Goal Zero Bolt flashlight to use them.

Biodiesel equipment hacks

biodiesel_hacks

[Oldman] took on a biodiesel project for some friends a few years ago. A fully operational processing rig was never achieved, but he did document some of the successful hacks he came up during the project.

The idea is to reclaim the waste oil from restaurants and burn it in your modified racing motorcycle or other mode of transportation. That makes it sound easy, but have you ever seen what happens to bacon fat after it cools? Granted, we’re talking oil from vegetable sources but the same type of coagulation presents itself. Pumping it through a processing rig becomes especially tough in the winter, and that’s why [Oldman] came up with the heated pump head on the right. It’s got three connections; two are part of a loop of copper tubing, allowing 150 degree water to be circulated to liquefy the grease. The third connection sucks up the melted oil. You also need to regulate the water content of the fuel. The inset images of a salad dressing jar are his test runs with applying vacuum to dehydrate the fuel. He learned that it needs to be heated slightly to reduce foaming. He had planned to scale up this concept to apply vacuum to fuel stored in propane tanks.

Resole shoes with old tire tread

resole-shoes-with-tires

These shoes are heavier than normal, they don’t grip as well as store-bought, and it’s a heck of a lot of work to make a pair for yourself. But if you do pull this one off you’ll have a great time showing everyone your custom tire tread shoe hack.

Two things motivated [Martin Melchior] to give this a try. The first is that tire tread is virtually indestructible when only supporting the weight of a person. Secondly, this reuses otherwise worn-out tires, making it a recycling project.

Pretty much all of the work has to do with getting the tread ready for use. Cutting off the sidewalls and sawing the ring of tread in half is rather easy. But then you have to split the tread off of the steel belts, which is not. [Martin] recommends using vice-grip pliers to grab the outer lay and pull it away from the tread, slicing along the belts with a utility knife as you go. Once you do have a flat strip just glue it to your shoes and cut away the excess.

We’re more into a different type of retread that actually takes you places.