The Netflix and Chill Button

While the people at Netflix were busy killing weekends around the world with marathon viewings of 90s sitcoms, they also found time to release the Netflix Switch. It’s a small device with a single button that will control your TV, turn off the lights, and order a pizza. Remember, time you enjoy wasting is not wasted time.

netflixThe Netflix Switch is a relatively simple device powered by a Particle Core, an Arduino-compatible development board with on-board WiFi. Also in this box is a LiPo battery, a few LEDs, and an IR transmitter that will send the same IR signal as the Netflix button on your TV remote, should your remote have a Netflix button.

In an unprecedented break from reality, this astute corporate branding of electronics tinkering also has design files, schematics, and real instructions that come along with it. Netflix released all of the mechanical files for their switch in Solidworks format; for the low, low price of only $4000 per Solidworks license, you too can Netflix and Chill.

Although Netflix’ implementation of tapping into a DIY electronics movement that has been around for 100 years is lacking, the spirit of the build is laudable. A single button connected to the Internet is a universal tool, and whether you want to order a pizza or make a ‘do not disturb’ button for your phone, the only limitation for the Netflix and Chill button is your imagination.

Better TV Via Hacking

Smart TVs are just dumb TVs with a computer and a network connection, right? In a variation of rule 34, if it has a computer in it, someone will hack it. When [smarttvhacker] bought a Sony 48 inch smart TV, he noticed all the software licenses listed in the manual and realized that was a big leg up into hacking the TV.

We don’t have a comparable Sony model, but [smarttvhacker’s] post is a veritable travel log of his journey from TV viewer to TV ruler. By analyzing everything from network port scans to a dump of a firmware upgrade, he wound up being able to install a telnet server.

Continue reading “Better TV Via Hacking”

3D Printed Mini Vectrex

With the more common availability of 3D printers, making miniature models of retro computer and video game gear is one way to nerd out and not fill the house up. [Jason] was looking around and noticed that no one has modeled the Vectrex video game system and stepped right in to fill the void with a working 3d printed miniature model of the unique early 80’s video game system.

For those who don’t live and breathe retro game systems, the Vectrex is a 1982 8 bit game machine unique in the fact that it comes with its own monochrome vector graphics CRT in the console. [Jasons] model features a 2.2 inch LCD with a SPI interface.

Emulation is powered by a VoCore SBC sporting a 360Mhz MIPS CPU and a modest 32 megs of ram, which is more than enough to handle the 8 bit math and wireframe graphics. The emulator used is a port 0f VECX with the display rerouted to the LCD screen instead of using standard SDL interfaces.

The case was modeled in Sketchup, and the whole lot is powered by a 3v3 lipo battery.  Join us after the break for a quick video of the mini model running the introduction to “Mine Storm” which was the onboard game original to the machine.

Continue reading “3D Printed Mini Vectrex”

Millions of Satellite Receivers are Low-Hanging Fruit for Botnets

Satellite television is prevalent in Europe and Northern Africa. This is delivered through a Set Top Box (STB) which uses a card reader to decode the scrambled satellite signals. You need to buy a card if you want to watch. But you know how people like to get something for nothing. This is being exploited by hackers and the result is millions of these Set Top Boxes just waiting to form into botnets.

This was the topic of [Sofiane Talmat’s] talk at DEF CON 23. He also gave this talk earlier in the week at BlackHat and has published his slides (PDF).

stb-hardwareThe Hardware in Satellite receivers is running Linux. They use a card reader to pull in a Code Word (CW) which decodes the signal coming in through the satellite radio.

An entire black market has grown up around these Code Words. Instead of purchasing a valid card, people are installing plugins from the Internet which cause the system to phone into a server which will supply valid Code Words. This is known as “card sharing”.

On the user side of things this just works; the user watches TV for free. It might cause more crashes than normal, but the stock software is buggy anyway so this isn’t a major regression. The problem is that now these people have exposed a network-connected Linux box to the Internet and installed non-verified code from unreputable sources to run on the thing.

[Sofiane] demonstrated how little you need to know about this system to create a botnet:

  • Build a plugin in C/C++
  • Host a card-sharing server
  • Botnet victims come to you (profit)

It is literally that easy. The toolchain to compile the STLinux binaries (gcc) is available in the Linux repos. The STB will look for a “bin” directory on a USB thumb drive at boot time, the binary in that folder will be automatically installed. Since the user is getting free TV they voluntarily install this malware.

Click through for more on the STB Hacks.

Continue reading “Millions of Satellite Receivers are Low-Hanging Fruit for Botnets”

Nin10do Retro Game Console Stands Above All Others

If your living room entertainment area is not home to a Raspberry Pi based retro game console, you no longer have any excuses. Break out your soldering iron and volt/ohm meter and preheat the 3d printer, because you will not be able to resist making one of the best retro game consoles we’ve ever seen – The Nin10do.

It’s creator is [TheDanielSpies]. Not only did he make the thing from scratch, he’s done an extraordinary job documenting all the build details, making it easier than ever to follow in his footsteps and make one of your own. He designed the case in Autodesk and printed it out with XT Co-polyester filament. He uses a Raspi of course, along with an ATX Raspi board from Low Power Labs to make the power cycling easier. There’s even a little stepper that opens and closes a cover that hides the four USB ports for controllers. Everything is tied together with Python, making the project super easy to modify and customize to your liking.

All code, schematics and .stl files are available on his github. It even has its own Facebook page! Be sure to check out the vast array of videos to help you along with your build.

Continue reading “Nin10do Retro Game Console Stands Above All Others”

Teensy Adds S/PDIF to Library

With Arduino library support on an ARM Cortex M4 processor, it’s no surprise that we’re fans of the Teensy 3.1. And lately, [Paul Stoffregen] has been building out the Audio Library for this platform, making it even more appealing to the synth / audio geeks among us. And now, with just the addition of a highfalutin LED and some software, the Teensy can output digital audio over optical fiber.

S/PDIF, and more specifically optical TOSLINK, uses LED light sent down an optical fiber to encode audio data. The advantage of this over any voltage-level signals (like with regular wires) is that the source and destination devices aren’t electrically connected at all, which gets rid of the dreaded ground loop hum and any RF interference.

An S/PDIF audio data stream is a bit complex, but if you’re interested [Micah Scott] has a fantastic dissection of it up on her blog. Of course, you don’t have to know anything about any of that to simply use S/PDIF with the Teensy Audio Library.

We love open source hardware and software because of the collaborations that make ultra-rapid development of niche stuff like this possible. You can follow along with the development of the Teensy’s S/PDIF capabilities on the PJRC forum. Contributor [Frank B] modestly claims that “everything was already on the internet”, but that doesn’t make it any less cool that they got from zero to working library in a few weeks. (And note the clever use of a precomputed lookup table for speed.)

LED_TOSLINK2On the hardware side, [Paul] has posted up his adapter board for a cheap, but very professional looking, optical TOSLINK sender. But if you’re feeling ghetto, you can simply use a red LED pointed just right into the optical cable.

The end result? Lossless transmission of CD-quality audio from an Arduino-esque microcontroller, sent on a beam of light, for less than the cost of a latté.

MAMEFrame – Sweet All In One Portable MAME System

Video game enthusiast [NEIN] loves MAME. The one thing he doesn’t like much about MAME is moving large heavy MAME cabinets around. So what do you do if you want to take your games on the road? [NEIN] decided to come up with a portable MAME solution that includes everything all in one box so there is virtually no set-up time to get playing. He calls it ‘The MAMEFrame‘.

It may appear that this is a standard 2-player DIY controller, however, it is anything but. The display is housed inside the encloure — a video projector that connects to the Raspberry Pi via an HDMI cable. [NEIN] opted to use a Raspberry Pi instead of a large PC to help keep things light and samll. It’s almost like the two were made for each other. The projector has a built in battery and USB port. The Raspberry Pi is powered by the 5 volts supplied from the projector’s USB port making this unit completely portable and wireless. Just plop it down on a table, point it at a wall and you’re ready to guide Pac-Man to level 256!

Did you know one of the very first Raspberry Pi hacks ever was a MAME build?

Continue reading “MAMEFrame – Sweet All In One Portable MAME System”