5D Glass Disc Can Store 360TB!

There’s a small subset of hackers out there concerned with the end of the world. What if our entire existence vanished? How would an alien race learn not to do what we did, what resulted in our demise? We’ve all heard of laser etching metal disks with the Bible, accounts of history, and even just names — pretty sure we’ve sent quite a few into space. But researchers at the University of Southampton’s Optical Research Center have come up with an even superior storage method. They call it the 5D Disc.

According to the researchers, each disc could hold a theoretical 360TB. They can withstand temperatures of up to 1000C, and it’s believe that they could last up to 13.8 billion years at room temperature without degrading — if that’s true, our sun would be long dead before the disc degraded! Continue reading “5D Glass Disc Can Store 360TB!”

VHS-Tape-Plasma Mirror Drives Tiny Particle Accelerator

When you think of a particle accelerator, you’re probably thinking of tens of kilometers of tube buried underground, at high vacuum, that uses precisely timed electromagnetic fields to push charged particles like electrons up to amazing speeds (and energies). However, it’s also possible to accelerate electrons in other ways, and lasers are a good bet. Although a laser-based particle accelerator can push electrons very effectively for a few centimeters, they top out at a relatively low maximum “speed” of a couple billion electron-volts, as opposed to the trillions of eV that you can get out of a really big traditional accelerator.

If only you could repeat the laser trick again, “hitting” the already-moving electrons from behind with another beam, you could boost them up to even higher energies. Doing so would take something like a one-way mirror that lets the electrons pass through, but that you could then bounce a laser beam off of. In a fantastic mixture of science and mother-of-invention-style hacking, these scientists from Lawrence Berkeley National Labs use plain-old VHS tape to make plasma mirrors to do just that. Why VHS tape? Because it’s cheap, flexible, and easy to move through the apparatus at high speeds.

The device works like this: a first laser beam passes through a jet of ionized gas and pulls some electrons with it. These electrons are then focused into a beam and pass through some (moving) VHS tape. The electrons punch a hole through the tape. In their wake they leave a hot plasma of mid-90s TV shows you never got around to watching. The second laser beam is then bounced off this plasma mirror and further accelerates the electron beam from behind. In principle, you could repeat this second stage enough times to build up the energy you needed, but for now the crew is working to characterize their single-stage beam. Getting the timing right on the second-stage beam is, naturally, non-trivial.

Anyone who has spent some time in a science lab knows that there are millions of these tiny get-it-done-quick hacks behind the scenes, but it’s nice to see one take center stage as well. If you’ve got stories of great lab hacks that you’d like to see us cover, post up in the comments!

Thanks [Bruce] for the tip, via Science Daily.

Stop Driving Laser Cutters with 3D Printer Software!

Laser cutters are fantastic pieces of equipment, and thanks to open-source improvements in recent years, are getting even cheaper to make. It can be as simple as throwing a high-powered laser diode onto the head of your 3D printer! With so many home-brew designs out there, wouldn’t it be nice if there was some all-encompassing open-source, laser-cutter controller software? Well, as it turns out — there is, and it’s called LaserWeb.

What started as a simple personal project by [Peter van der Walt] has recently grown into a very formidable piece of software with over 10 contributors in just three months. It even supports four different firmwares, from grbl, to smoothieware, marlin and even lasaurgrbl!

It’s designed to support home-made laser cutters, diode based laser engravers, and even converted Chinese laser cutters. With built-in CAM for PolyLine DXF, and SVG, it can even create rasters from images. Stick around after the break to see a quick video demo — we’re going to have to try this out!

Continue reading “Stop Driving Laser Cutters with 3D Printer Software!”

Pack Your Plywood Cuts with Genetic Algortihms

Reading (or writing!) Hackaday, we find that people are often solving problems for us that we didn’t even know that we had. Take [Jack Qiao]’s SVGnest for instance. If you’ve ever used a laser cutter, for instance, you’ve probably thought for a second or two about how to best pack the objects into a sheet, given it your best shot, and then moved on. But if you had a lot of parts, and their shapes were irregular, and you wanted to minimize materials cost, you’d think up something better.

SVGnest, which runs in a browser, takes a bunch of SVG shapes and a bounding box as an input, and then tries to pack them all as well as possible. Actually optimizing the placement is a computationally expensive proposition, and that’s considering the placement order to be fixed and allowing only 90 degree rotations of each piece.

Once you consider all the possible orders in which you place the pieces, it becomes ridiculously computationally expensive, so SVGnest cheats and uses a genetic algorithm, which essentially swaps a few pieces and tests for an improvement many, many times over. Doing this randomly would be silly, so the routine packs the biggest pieces first, and then back-fills the small ones wherever they fit, possibly moving the big ones around to accommodate.

That’s a lot of computational work, but the end result is amazing. SVGnest packs shapes better than we could ever hope to, and as well as some commercial nesting software. Kudos. And now that the software is written, as soon as you stumble upon this problem yourself, you have a means to get to the solution. Thanks [Jack]!

DIY Laser Lumia Lights Up The Night

Lasers are awesome, and as the technology continues to advance, they keep getting cheaper! If you’ve ever wanted your own laser light show in your man cave, it’s never been easier.

In the 70’s [rgrokett] was a planetarium technician, responsible for building and operating laser shows. Back then, the laser modules were huge and expensive. After being reminded of days gone past, thanks to an article about laser light show operators, he decided to try his own hand at building a Low-cost Laser Lumia Lightshow.

And it couldn’t be easier.

Continue reading “DIY Laser Lumia Lights Up The Night”

Laser Cutting a Bread Knife

What started out as simply a question of whether or not they could… [G2AS] decided to try making a laser cut serrated bread knife — out of plastic.

Now from a distance this may look like they just took their laser cutter and cut out the pattern of a knife, with a jigsaw edge. But no, they actually laser cut a jig which allowed them to cut the serrated edge on an angle, creating an actual sharp edge. It’s quite the setup, but a pretty awesome result. Continue reading “Laser Cutting a Bread Knife”

Laser Cut Map Taken to the Next Level

For Christmas this year, [Scottshambaugh] decided to make his family a map of their hometown — Portland, ME. Using topographical map data, he made this jaw-dropping 3D map, and it looks amazing.

He started by exporting the elevation data of Portland using software called QGIS, a free opensource geographical information system — it’s extremely powerful software, but takes a bit to learn. Luckily, [Scott] made a tutorial for us. All you need to do is add the road data, put all the slices into an illustrator file, clean up some of the files, and you’re ready to start laser cutting.

He used 1/8th thick sheets of Baltic birch plywood, a staple material around laser cutters because it burns quickly and easily and is very flexible, which means that it’s harder to break. The map measures 12″ x 24″ — but once it’s laser cut, be ready for a multi-leveled jigsaw puzzle! The small pieces of elevation data can be very tricky!

Continue reading “Laser Cut Map Taken to the Next Level”