Internet-Connected Box Displays Emotion, Basement Dwellers Still Unaffected

For one reason or another, Twitter has become the modern zeitgeist, chronicling the latest fashions, news, gossip, and irrelevant content that sends us spiraling towards an inevitable existential ennui. This is a Twitter mood light. It tells you what everyone else on the planet is feeling. You, of course, feel nothing. Because of the ennui.

[Connor] decided it would be a good idea to audit the world’s collective mood using experimental social analytics. He’s doing that by watching millions of tweets a day and checking them against hundreds of keywords for several emotions. These emotions are graphed in real time, placed on a server, correlated and corroborated, and downloaded by a moodLight. Inside the moodLight, the emotions are translated into colors, and displayed with the help of a few RGB LEDs.

The moodLight is currently a Kickstarter campaign, with a $30 pledge getting you an assembled board with an ATMega328, an ESP8266, a few RGB LEDs, and a laser cut enclosure. After it’s assembled, the moodLight connects automagically to the analytics server for a real-time display of the emotional state of the Twitterverse. The display is updated every second, making the backend of this build just slightly more impressive than Kickstarter itself. It’s great work from [Connor], and an interesting experiment in analyzing the state of the Internet.

Halloween Hood Has Hideous LED Gaze

Looking to create fear and dread with your Halloween costume? [Becky Stern] over at Adafruit has you covered, with her tutorial on building a mystical hood with LED eyes, perfect for your next Jawa, Black Mage, or Orko costume.

This creepy-looking creation is based around a Gemma controller driving two NeoPixel Jewels, small circular RGB LED boards. The Gemma drives the boards to slowly fade on and off for the required creepy eye effect, but it would be easy to create other lighting patterns.

Speaking of patterns, the tutorial also includes a sewing pattern for the hood, and plans for a 3D printed battery holder that would make the whole thing very easy to carry. If the eyes aren’t enough, how about adding an LED magic staff to complete your creepy ensemble? Or perhaps some light-up dinosaur spiky plates?

Do you have any good Halloween costume hack plans? Let us know in the comments, and we’ll put together a list of the best closer to the hideous day.

Continue reading “Halloween Hood Has Hideous LED Gaze”

Doubling Down on a Big LED Display

Last year at the 2014 NC Maker Faire, Manical Labs brought a large LED display. Blinking LEDs and pixel animations are always welcome, but at 24 inches square this build was impressive, but it wasn’t impressive enough. This year, [Adam] at Manacal Labs wanted to go bigger. Much bigger. This build is called Colossus, and at two square meters and with 1250 individual LEDs, this LED display is a colossal build.

When building a big LED display, an enormous amount of planning pays off in dividends. The backbone of this project is a sheet of 3/8″ plywood, ripped down to 1 meter by 2 meters. 1250 half-inch holes are drilled in this sheet over four or five very long and very tedious evenings. The LEDs are installed in the thousand or so holes, and a grid of foam core board encases each individual LED.

One of the biggest problems with large arrays of LEDs is the sheer scale of it all. If one LED pixel draws 60mA, 1250 pixels means a draw of 75 Amps. This current will melt most wires, so the power is delivered over custom made copper bus bars. Driving this display with a reasonable refresh rate is another important consideration; WS2812 lights, with an 800kHz signal over one wire, is far too slow for a huge display. Instead of the 2812s, [Adam] went with LPD8806 LEDs that can be clocked at 30MHz. This is controlled with two AllPixels, effectively making this two displays acting as one. It all comes together in a very big LED display. You can check out a video of it below.

Continue reading “Doubling Down on a Big LED Display”

A Thousand LED Lights For Your Room

Sure, you could get a regular light fixture like a normal person… Or you could use close to a thousand RGB LEDs to light your room!

That’s what [Dmitry] decided to do after trying to figure out the best way to light his pad. You see, his room is 4 by 4 meters, and WS2812 RGB LED strips happen to come in 4 meter lengths… Coincidence? We think not.

The problem with using 16 meters of LED strips is powering them… You see, at 16 meters, you’re looking at about 5V @ 57.6A — and we’re guessing you probably don’t have a 5V 60A power supply handy. Not to mention if you run them in series, the resistance of the system is going to kill your efficiency and the last LEDs probably won’t even work… So [Dmitry] had to break the system up. He has two power supplies feeding the strips from the middle of each pair — that way, he doesn’t have to worry about any voltage drops due to the length of the strips.

Continue reading “A Thousand LED Lights For Your Room”

The HEXXX Gaming Console

Worried about bringing a project to demo at CCC15 (The Chaos Communication Camp), [Anthony Liekens] had to act fast. He would have brought his giant Flying Spaghetti-Monster Display (FSM for short), but unfortunately it wouldn’t fit in his car. So, looking around his garage he realized he had a pile of extra RGB LEDs, and a broken iCade Core. The gears in his head started turning and he came up with the idea for the HEXXX Gaming Console.

So what is it? It’s a hexagonal console designed for three-person gaming — like his Tron for Three and Pong for Three — he even has a 6 player Flappy Bird clone! From conception to reality, it took a mere ten stressful evenings to complete… The end result is quite fantastic. Continue reading “The HEXXX Gaming Console”

Because Burning Man Needed More LEDs

There are a lot of blinky glowy things at Burning Man every year, and [Mark] decided he would literally throw his hat into the ring. He built a high visibility top hat studded with more RGB LEDs than common sense would dictate. It’s a flashy hat, and a very good example of the fashion statement a few hundred LEDs can make.

[Mark]’s top hat has 481 WS2812b addressable LEDs studded around the perimeter, a common LED choice for bright and blinky wearables. These LEDs are driven by a Teensy 3.1, with a Bluetooth transceiver, a GPS module, a compass, and gyro/accelerometer attached to the microcontroller. That’s a lot of hardware, but it gives [Mark] the capability of having the hat react to its own orientation, point itself North, and allow for control via a modified Nintendo NES controller.

The WS2812 LEDs draw a lot of power, and for any wearable project having portable power is a chief concern. [Mark]’s original plan was to use an 8x battery holder for the electronics enclosure, and use five AA batteries to power the hat. The total idle draw of the LEDs was 4.5 Watts, and with even a few LEDs blinking colors there was a significant voltage drop. The idea of powering the hat with AA batteries was discarded and the power source was changed to a 195 Watt-hour lithium ion battery bank that was topped off each day with a solar panel.

The hat is awesome, exceedingly bright, and something that gets a lot of attention everywhere  it goes. For indoor use, it might be too bright, but this could be fixed with the addition of a bit of black stretchy fabric, like what our own [Mike Szczys] did for his DEF CON hat. [Mark]’s hat is just version 1, and he plans on making a second LED hat for next year.

Sending The Internet From an LED Lightbulb

The number of things that can carry Internet traffic is always increasing. Now, you can add LED light bulbs to this list, as engineers in Disney Research have just demonstrated a system that transmits Internet traffic using an LED light bulb. This method of communication isn’t new: Visible Light Communication (VLC) has been demonstrated before by Disney and others, but this project puts it into a standard LED light bulb. This bulb has been modified to include an Atheros AR9331 SoC running OpenWRT and an Atmel ATmega328p that controls the LED elements and sensors that send and receive the data. So, the device is acting as a gateway between a WiFi network and a VLC one.

Disney’s new test system (PDF link) isn’t especially fast: it can only carry about 380 to 400 bits per second, so it won’t be streaming video anytime soon. That is definitely fast enough, though to send control data to a toy, or to send a continual stream of updated data to a device in the room, such as an ebook reader with a continually updated encyclopaedia. This being Disney, the authors coin a new phrase to end their paper: The Internet of Toys.