Enzymes From The Deep – The Polymerase

Our bodies rely on DNA to function, it’s often described as “the secret of life”. A computer program that describes how to make a man. However inaccurate these analogies might be, DNA is fundamental to life. In order for organisms to grown and replicate they therefore need to copy their DNA.

dna-replication
DNA structure and replication

Since the discovery of its structure in 1953, the approximate method used to copy DNA has been obvious. The information in DNA is encoded in 4 nucleotides (which in their short form we call A,T,G, and C). These couple with each other in pairs, forming 2 complimentary strands that mirror each other. This structure naturally lends itself to replication. The two strands can dissociate (under heat we call this melting), and new strands form around each single stranded template.

However, this replication process can’t happen all by itself, it requires assistance. And it wasn’t until we discovered an enzyme called the DNA polymerase that we understood how this worked. In conjunction with other enzymes, double stranded DNA is unwound into 2 single strands which are replicated by the polymerase.

Continue reading “Enzymes From The Deep – The Polymerase”

Hacker Straightens Own Teeth

So you say your wonky smile has you feeling a bit self-conscious? And that your parents didn’t sock away a king’s ransom for orthodontia? Well, if you have access to some fairly common fab-lab tools, and you have the guts to experiment on yourself, why not try hacking your smile with DIY braces?

First of all: just – don’t. Really. But if you’re curious about how [Amos Dudley] open-sourced his face, this is one to sink your teeth into. A little research showed [Amos] how conventional “invisible” braces work: a 3D model is made of your mouth, each tooth is isolated in the model, and a route from the current position to the desired position is plotted. Clear plastic trays that exert forces on the teeth are then 3D printed, and after a few months of nudging teeth around, you’ve got a new smile. [Amos] replicated this hideously expensive process by creating a cast of his teeth, laser scanning it, manipulating the teeth in 3D modeling software, and 3D printing a series of intermediate choppers. The prints were used to vacuum mold clear plastic trays, and with a little Dremel action they were ready to wear. After 16 weeks of night and day wear, the results are pretty amazing – a nicely aligned smile, and whiter teeth to boot, since the braces make great whitening trays.

Considering how badly this could have turned out, we’ve got to hand it to [Amos] for having the guts to try this. And maybe he’s onto something – after all, we’ve advocated for preemptive 3D scanning of our bodies recently, and what [Amos] did with this hack is a step beyond that.

[LupusMechanicus], thanks for the tip!

Stretchable Traces for Flexible Circuits

Electronic components are getting smaller and smaller, but the printed circuit boards we usually mount them on haven’t changed much. Stiff glass-epoxy boards can be a limiting factor in designing for environments where flexibility is a requirement, but a new elastic substrate with stretchable conductive traces might be a game changer for wearable and even implantable circuits.

qxMo1DResearchers at the Center for Neuroprosthetics at the École Polytechnique Fédérale de Lausanne are in the business of engineering the interface between electronics and the human nervous system, and so have to overcome the mismatch between the hardware and wetware. To that end, [Prof. Dr. Stéphanie P. Lacour]’s lab has developed a way to apply a liquid metal to polymer substrates, with the resulting traces capable of stretching up to four times in length without cracking or breaking. They describe the metal as a partially liquid and partially solid alloy of gallium, with a gold added to prevent the alloy from beading up on the substrate. The applications are endless – wearable circuits, sensors, implantable electrostimulation, even microactuators.

Looks like progress with flexibles is starting to pick up, what with the conductive silicone and flexible phototransistors we’ve covered recently. We’re excited to see where work like this leads.

Continue reading “Stretchable Traces for Flexible Circuits”

EKG Business Card Warms Our Hearts

Giving out a paper business card is so 1960s. Giving out a PCB business card, well that gets you up to the early 2010s. If you really want to stand out these days, give them a fully-functional EKG in a business card. (Note: works best if you’re leading an open-source electrocardiography project.)

Looking through the schematics (PDF), there’s not much to the card. At the center of everything is an ADuC7061, which is an ARM microprocessor equipped with 24-bit ADCs that also has an internal DAC-driven voltage reference connected to one of the user’s thumbs. This, plus a little buffering circuitry, seems to be enough to translate the tiny voltage potential difference across your two hands into a beautiful signal on the included OLED display. Very nice!

Everything (including the big version of their EKG) is open source and made on an open toolchain. If you’re interested in health and medical sensing, you should head over to the project’s GitHub and check it out. The standalone open EKG is based on a much more complicated circuit, and stands to be more accurate. But the business card version is just soooo cute!

Thanks [Ag Primatic] for the tip!

Smart Sweatbands

If you’ve ever known anyone who has to monitor their blood glucose level, you know it is annoying to have to prick your finger with a lancet to draw blood for each measurement. A new sweatband that incorporates flexible electronics can measure glucose–as well as sodium, potassium, and lactate–from your sweat, without a painful pin prick.

Continue reading “Smart Sweatbands”

Mind-Controlled Prosthetic Arm

Losing a limb often means getting fitted for a prosthetic. Although there have been some scientific and engineering advances (compare a pirate’s peg leg to “blade runner” Oscar Pistorius’ legs), they still are just inert attachments to your body. Researchers at Johns Hopkins hope to change all that. In the Journal of Neural Engineering, they announced a proof of concept design that allowed a person to control prosthetic fingers using mind control.

Continue reading “Mind-Controlled Prosthetic Arm”

Brain Waves can Answer Spock’s (and VR’s) Toughest Question

In Star Trek IV: The Voyage Home, the usually unflappable Spock found himself stumped by one question: How do you feel? If researchers at the University of Memphis and IBM are correct, computers by Spock’s era might not have to ask. They’d know.

[Pouya Bashivan] and his colleagues used a relatively inexpensive EEG headset and machine learning techniques to determine if, with limited hardware, the computer could derive a subject’s mental state. This has several potential applications including adapting virtual reality avatars to match the user’s mood. A more practical application might be an alarm that alerts a drowsy driver.

Continue reading “Brain Waves can Answer Spock’s (and VR’s) Toughest Question”