Brains Controlling Labyrinths Without Hands

[Daniel], [Gal] and [Maxim] attended a hackathon last weekend – Brainihack 2015 – that focused on neuroscience-themed builds in a day and a half long build off. The trio are communications systems engineering and computer science students with no background in neuroscience whatsoever. You can’t build an FMRI in a day and a half, so they ended up winning the best project in the open source category with a brain-controlled labyrinth game.

The labyrinth itself is entirely 3D printed and much, much simpler than the usual, ‘wooden maze with holes’ that’s generally associated with labyrinth puzzles. It’s really just a plastic spiral for a ball to follow. There’s a reason for this simplicity. The team is using EEG to detect brain waves and move the labyrinth on the X and Y axes.

The team is using OpenBCI for the interface between their brains and a pair of servos. This is actually an interesting piece of tech; unlike a few toys like the NeuroSky MindWave and the Star Wars Force Trainer, the OpenBCI gives you eight input channels that attach to anywhere on the scalp. The team used these inputs to measure Alpha waves and Steady State Visually Evoked Potential to control the pair of servos on the labyrinth frame.

It’s a great build, a wonderful demonstration of a device that outputs real EEG signals, and the team on a prize. What’s not to like?

2015 THP Inspiration: Medical Hacks

Last year’s Hackaday Prize focused on building something cool, useful, and open. This led to builds as impressive as quadcopters nicknamed the Decapitron, to devices as useful as an Everything Radio. It’s a big field, and if you want to build something that will win, you first need an idea.

This year we’re making that part of the process a little easier for you. We’re looking for builds that matter, be they devices that monitor pollution, feed entire populations, lay the groundwork for powering an entire city, or reduce the cost and increase access to medical care.

pillminderMedical builds are a tricky subject, but over the years we’ve seen a few that stand out. Some can be as simple as a pill dispenser that tells the Internet when you don’t take your meds. This type of build is actually pretty popular with several iterations, one that works with pill bottles.

Maybe a gadget you could find in a drug store isn’t your thing. That’s okay, instead you can turn your attention to advanced medical imaging, like 3D printing a brain tumor and preventing a misdiagnosis. We’ve seen 3D printed MRI and CT scans for a while now, and coming up with a system that automates the process would be a great entry for the Hackaday prize.

prosOf course with 3D printers, you have a bunch of prosthesis applications; from a nine-year-old who designed his own prosthetic arm, a printed prosthetic arm for a stranger, or something simpler like our own [Bil Herd]’s quest to rebuild a finger.

These are all simple builds, but ones that clearly meet the criteria of doing something meaningful. The sky is the limit, and if you want to improve the desktop CT scanner, learn CPR (correctly) from an automated assistant, or be brought back to life with your own design, that’s all well within the goals of this year’s Hackaday Prize.

Building a Transcutaneous Electrical Nerve Stimulation Device in a Weekend

Transcutaneous electrical nerve stimulation (TENS) is a technique that applies electrical current to nerves and muscles for the relief of pain. Before you ask, yes, some of these devices are FDA approved for various ailments. [Eric], [Conor], [Jacob], [lnr0626] and [rdrdrdrd] were down at HackDFW this weekend and built a TENS device from parts in their scrap bin.

A semi-decent TENS machine can cost somewhere between $70 and $200, but the team here have reduced the cost tremendously simply by separating the futzing analog/contact pad part from the signal generation part of the project. The signal generation actually happens on an Android phone, with settings to ‘relieve pain’, ‘relax’, ‘pulse’, and ‘random’. These signals are generated as audio and sent out over the headphone port. From there, the signal is amplified and sent to the neat skin-contact pads.

After prototyping their circuit, the team actually etched a circuit board for the final phase of the hackathon. Demo video below.

Continue reading “Building a Transcutaneous Electrical Nerve Stimulation Device in a Weekend”

Use the Force, Luke…to Turn Off Your TV

Have you ever wanted to turn on or off your TV just by thinking about it? We love this hack mainly because it uses an old Star Wars Force Trainer game. You can still buy them for about $40-$80 USD online. This cool little toy was introduced in 2009 and uses a headset with electrodes, and an electroencephalography (EEG) chip. It transmits the EEG data to control a fan that blows air into a tube to “levitate” a ball, all the while being coached on by the voice of Yoda. (Geesh! Kids these days have the best toys!)

[Tinkernut] started by cracking open the headset, where he found the EEG chip made by a company called NeuroSky (talk about a frightening sounding company name). The PCB designer was kind enough to label the Tx/Rx pins on the board, so hooking it up to an Arduino was a snap. After scavenging an IR LED and receiver from an old VCR, the hardware was just about done. After a bit of coding, you can now control your TV by using the force! (Ok, by ‘force’ I mean brainwaves.)  Video after the break.

Note: [Tinkernut’s] blog page should have more information available soon. In the meantime if you can find his Arduino Brain Library on github.

This isn’t the first EEG to TV interface we’ve featured. Way back in 2010 we featured a project that used an Emotiv EPOC EEG headset to turn on and off a TV. But at $400 for the headset, it was a little too expensive for the average Jedi.

Continue reading “Use the Force, Luke…to Turn Off Your TV”

Store Digital Files for Eons in Silica-Encased DNA

If there’s one downside to digital storage, it’s the short lifespan.  Despite technology’s best efforts, digital storage beyond 50 years is extremely difficult. [Robert Grass, et al.], researchers from the Swiss Federal Institute of Technology in Zurich, decided to address the issue with DNA.  The same stuff that makes you “You” can also be used to store your entire library, and then some.

As the existence of cancer shows, DNA is not always replicated perfectly. A single mismatch, addition, or omission of a base pair can wreak havoc on an organism. [Grass, et al.] realized that for long-term storage capability, error-correction was necessary. They decided to use Reed-Solomon codes, which have been utilized in error-correction for many storage formats from CDs to QR codes to satellite communication. Starting with uncompressed digital text files of the Swiss Federal Charter from 1291 and the English translation of the Archimedes Palimpsest, they mapped every two bytes to three elements in a Galois field. Each element was then encoded to a specific codon, a triplet of nucleotides. In addition, two levels of redundancy were employed, creating outer- and inner- codes for error recovery. Since long DNA is very difficult to synthesize (and pricier), the final product was 4991 DNA segments of 158 nucleotides each (39 codons plus primers).

Continue reading “Store Digital Files for Eons in Silica-Encased DNA”

Developer Saved Years Later by His Own Hardware

Bryan is a computer neophyte (he needs help turning his computer on), but he has a basketball story. His team was playing in a crucial basketball playoff game at the club. They were down by two late in the game and he just couldn’t get one of his players to play defense. This player was a great shooter and that is about it — burying a three that put the team up for the first time. After sinking it he just stood there admiring his masterpiece while Bryan screamed at him to get back on defense (he rarely played D and he didn’t that game either). Instead, he flat lined and went down on his face– heart attack!

Of course that player was me and that was an awful day. But I’m still around to tell the story… as a hardware designer years before I didn’t know that I’d bet everything on one particular project.

Continue reading “Developer Saved Years Later by His Own Hardware”

Husband Uses MRI images to 3D print Wife’s Skull and Tumor

[Michael Balzer] shows us that you are your own best advocate when it comes to medical care – having the ability to print models of your own tumors is a bonus. [Michael’s] wife, Pamela, had been recovering from a thyroidectomy when she started getting headaches. She sought a second opinion after the first radiologist dismissed the MRI scans of her head – and learned she had a 3 cm tumor, a meningioma, behind her left eye.  [Michael], host of All Things 3D, asked for the DICOM files (standard medical image format) from her MRI.  When Pamela went for a follow-up, it looked like the tumor had grown aggressively; this was a false alarm. When [Michael] compared the two sets of DICOM images in Photoshop, the second MRI did not truly show the tumor had grown. It had only looked that way because the radiologist had taken the scan at a different angle! Needless to say, the couple was not pleased with this misdiagnosis.

However, the meningioma was still causing serious problems for Pamela. She was at risk of losing her sight, so she started researching the surgery required to remove the tumor. The most common surgery is a craniotomy: the skull is sawed open and the brain physically lifted in order to access the tumor below it. Not surprisingly, this carries a high risk of permanent damage to any nerves leading to loss of smell, taste, or sight if the brain is moved the wrong way. Pamela decided to look for an alternative surgery that was less invasive. [Michael] created a 3D print of her skull and meningioma from her MRIs. He used InVesalius, free software designed to convert the 2D DICOM files into 3D images. He then uploaded the 3D rendered skull to Sketchfab, sharing it with potential neurologists. Once a neurologist was found that was willing to consider an alternative surgery, [Michael] printed the skull and sent it to the doctor. The print was integral in planning out the novel procedure, in which a micro drill was inserted through the left eyelid to access the tumor. In the end, 95% of the tumor was removed with minimal scarring, and her eyesight was spared.

If you want to print your own MRI or CT scans, whether for medical use or to make a cool mug with your own mug, there are quite a few programs out there that can help. Besides the aforementioned InVesalius, there is DeVIDE, Seg3D, ImageVis3D, and MeshLab or MeshMixer.