EKG Business Card Warms Our Hearts

Giving out a paper business card is so 1960s. Giving out a PCB business card, well that gets you up to the early 2010s. If you really want to stand out these days, give them a fully-functional EKG in a business card. (Note: works best if you’re leading an open-source electrocardiography project.)

Looking through the schematics (PDF), there’s not much to the card. At the center of everything is an ADuC7061, which is an ARM microprocessor equipped with 24-bit ADCs that also has an internal DAC-driven voltage reference connected to one of the user’s thumbs. This, plus a little buffering circuitry, seems to be enough to translate the tiny voltage potential difference across your two hands into a beautiful signal on the included OLED display. Very nice!

Everything (including the big version of their EKG) is open source and made on an open toolchain. If you’re interested in health and medical sensing, you should head over to the project’s GitHub and check it out. The standalone open EKG is based on a much more complicated circuit, and stands to be more accurate. But the business card version is just soooo cute!

Thanks [Ag Primatic] for the tip!

Smart Sweatbands

If you’ve ever known anyone who has to monitor their blood glucose level, you know it is annoying to have to prick your finger with a lancet to draw blood for each measurement. A new sweatband that incorporates flexible electronics can measure glucose–as well as sodium, potassium, and lactate–from your sweat, without a painful pin prick.

Continue reading “Smart Sweatbands”

Mind-Controlled Prosthetic Arm

Losing a limb often means getting fitted for a prosthetic. Although there have been some scientific and engineering advances (compare a pirate’s peg leg to “blade runner” Oscar Pistorius’ legs), they still are just inert attachments to your body. Researchers at Johns Hopkins hope to change all that. In the Journal of Neural Engineering, they announced a proof of concept design that allowed a person to control prosthetic fingers using mind control.

Continue reading “Mind-Controlled Prosthetic Arm”

Brain Waves can Answer Spock’s (and VR’s) Toughest Question

In Star Trek IV: The Voyage Home, the usually unflappable Spock found himself stumped by one question: How do you feel? If researchers at the University of Memphis and IBM are correct, computers by Spock’s era might not have to ask. They’d know.

[Pouya Bashivan] and his colleagues used a relatively inexpensive EEG headset and machine learning techniques to determine if, with limited hardware, the computer could derive a subject’s mental state. This has several potential applications including adapting virtual reality avatars to match the user’s mood. A more practical application might be an alarm that alerts a drowsy driver.

Continue reading “Brain Waves can Answer Spock’s (and VR’s) Toughest Question”

New Shape-Shifting Polymer Works Hard, Plays Hard

A research group at the University of Rochester has developed a new polymer with some amazing traits. It can be stretched or manipulated into new shapes, and it will hold that shape until heat is applied. Shape-shifting polymers like this already exist, but this one is special: it can go back to its original shape when triggered by the heat of a human body. Oh, and it can also lift objects up to 1000 times its mass.

The group’s leader, chemical engineering professor [Mitch Anthamatten], is excited by the possibilities of this creation. When the material is stretched, strain is induced which deforms the chains and triggers crystallization. This crystallization is what makes it retain the new shape. Once heat is applied, the crystals are broken and the polymer returns to its original shape. These properties imply several biomedical applications like sutures and artificial skin. It could also be used for tailored-fit clothing or wearable technology.

The shape-shifting process creates elastic energy in the polymer, which means that it can do work while it springs back to normal. Careful application of molecular linkers made it possible for the group to dial in the so-called melting point at which the crystallization begins to break down. [Anthamatten] explains the special attributes of the material in one of the videos after the break. Another video shows examples of some of the work-related applications for the polymer—a stretched out strand can pull a toy truck up an incline or crush a dried seed pod.

Continue reading “New Shape-Shifting Polymer Works Hard, Plays Hard”

Hacking Hearing with a Bone Conduction Bluetooth Speaker

When a hacker finds himself with a metal disc and magnet surgically implanted in his skull, chances are pretty good that something interesting will come from it. [Eric Cherry]’s implant, designed to anchor a bone-conduction hear aid, turned out to be a great place to mount a low-cost Bluetooth speaker for his phone – at least when he’s not storing paperclips behind his ear.

With single-sided deafness, [Eric]’s implant allows him to attach his bone-anchored hearing aid (BAHA), which actually uses the skull itself as a resonator to bypass the outer ear canal and the bones of the middle ear and send vibrations directly to the cochlea. As you can imagine, a BAHA device is a pretty pricey bit of gear, and being held on by just a magnet can be tense in some situations. [Eric] decided to hack a tiny Bluetooth speaker to attach to his implant and see if it would work with his phone. A quick teardown and replacement of the stock speaker with a bone-conduction transducer from Adafruit took care of the electronics, which were installed in a 3D printed enclosure compatible with the implant. After pairing with his phone he found that sound quality was more than good enough to enjoy music without risking his implant. And all for only $22 out-of-pocket. While only a Bluetooth speaker in its current form, we can see how the microphone in the speakerphone might be used to build a complete hearing aid on the cheap.

We think this is a great hack that really opens up some possibilities for the hearing impaired. Of course it’s not suitable for all types of hearing loss; for more traditional hearing aid users, this Bluetooth-enabled adapter might be a better choice for listening to music.

This is My 3D Printed Brain!

This hack is a strange mixture of awesome and ghoulish. [Andrew Sink] created a 3D printed version of his brain. He received a CD from an MRI session that contained the data obtained by the scan. Not knowing what to do with it he created a model of his brain.


Out of a number of images, some missing various parts of his head, he selected the one that was most complete. This image he brought into OisriX, a Mac program for handling DICOM files. He worked on the image for an hour dissecting away his own eyes, skull, and skin. An STL file containing his brain was brought over to NetFabb to see how it looked. There was still more dissection needed so [Andrew] turned to Blender. More bits and pieces of his skull’s anatomy were dissected to pare it down to just the brain. But there were some lesions at the base of the brain that needed to be filled. With the help of [Cindy Raggio] these were filled in to complete the 3D image.

The usual steps sent it to the 3D printer to be produced at 0.2 mm resolution. It only took 49 hours to print at full-size. This brain was printed for fun, but we’ve seen other 3D printed brain hacks which were used to save lives. How many people do you know that have a spare brain sitting around?