An Interactive Oasis At Burning Man

An oasis in the desert is the quintessential image of salvation for the wearied wayfarer. At Burning Man 2016, Grove — ten biofeedback tree sculptures — provided a similar, interactive respite from the festival. Each tree has over two thousand LEDs, dozens of feet of steel tube, two Teensy boards used by the custom breath sensors to create festival magic.

Grove works like this: at your approach — detected by dual IR sensors — a mechanical flower blooms, meant to prompt investigation. As you lean close, the breath sensors in the daffodil-like flower detect whether you’re inhaling or exhaling, translating the input into a dazzling pulse of LED light that snakes its way down the tree’s trunk and up to the bright, 3W LEDs on the tips of the branches.

Debugging and last minute soldering in the desert fixed a few issues, before setup — no project is without its hiccups. The entire grove was powered by solar-charged, deep-cycle batteries meant to least from sunset to sunrise — or close enough if somebody forgot to hook the batteries up to charge.

Continue reading “An Interactive Oasis At Burning Man”

Measuring Tiny Masses Acoustically

How do you measure the mass of something really, really tiny? Like fish-embryo tiny. There aren’t many scales with the sensitivity and the resolution to make meaningful measurements in the nanogram range, so you’ve got to turn to other methods, like measuring changes in the resonant frequency of a glass tube. And that turns out to be cheap and easy for the home gamer to reproduce.

In a recent scholarly paper, [William Grover] et al from the University of California Riverside outline the surprisingly simple and clever method of weighing zebrafish embryos, an important model organism used in all sorts of developmental biology and environmental research. [Grover]’s method is a scaled-up version of a suspended microchannel resonator (SMR), a microelectromechanical device that can measure the mass of single cells or even weigh a virus particle. Rather than etch the resonator out of silicon, a U-shaped glass tube is vibrated by a piezoelectric speaker and kept at its resonant frequency by feedback from a cheap photointerrupter. When an embryo is pumped into the tube, the slight change in mass alters the resonant frequency of the system, which is easily detected by the photointerrupter. The technique can even be leveraged to measure volume and density of the embryos, and all for about $12 in parts.

In the lab, [Grover]’s team uses a data acquisition card and LabVIEW to run the resonant loop, but there’s no reason a DIY version of this couldn’t use an Arduino. In fact, tipster [Douglas Miller] expects someone out there will try this, and would appreciate hearing the details. You can ping him on his page.

Customize Your Ratios with a 3D-Printed Gearbox

Small DC motors are easy to find — you can harvest dozens from old printers and copiers. You might even get a few with decent gearboxes too. But will you get exactly the motor with exactly the gearing your project needs? Unlikely, but you can always just print a gearbox to get exactly what you need.

There’s nothing fancy about [fortzero]’s gearboxes. The motors are junk bin specials, and the gears are all simple spur gears 3D-printed from PLA. There are four gears in the train, each with a 2:1 reduction, giving a 16:1 overall ratio. The gears ride on brass shafts that are press-fit into the housing, and there’s not a bearing in sight — just a few washers to keep the gears spaced apart and plenty of grease. Despite the simplicity, the gearboxes turned out to be pretty capable, lifting a 3.5 kg load. The design files are available and should make it easy for you to get just the ratio you want for the motor you have.

Of course more complicated gearboxes are possible with a 3D printer, including a split-harmonic planetary gear, or a strain wave gear using a timing belt. No 3D printer? No problem! Just build a LEGO gearbox.

Continue reading “Customize Your Ratios with a 3D-Printed Gearbox”

Popping the Top of A Ceramic IC

If you’ve ever wanted to open up an IC to see what’s inside it, you have a few options. The ceramic packages with a metal lid will succumb to a hobby knife. That’s easy. The common epoxy packages are harder, and usually require a mix of mechanical milling and the use of an acid (like fuming nitric, for example). [Robert Baruch] wanted to open a fully ceramic package so he used the “cooler” part of a MAP gas torch. If you like seeing things get hot in an open flame, you might enjoy the video below.

Spoiler alert: [Robert] found out the hard way that dropping the hot part isn’t a great idea. Also, we are not sure what the heat does if you want to do more than just inspect the die. It would be interesting to measure a junction on the die during the process to see how much heat actually goes to the device.

Continue reading “Popping the Top of A Ceramic IC”

Drinkable Clouds Get You Second-Hand Drunk

While the rise of electronic cigarettes and vaping has led to many aggravated bystanders, an installation in Germany may have found a vapor of a different ilk. Rather than nicotine, this cloud of vapors is full of tequila which precipitates out into glasses (or people) who happen to be nearby.

The cloud generator uses ultrasonic devices to vibrate the tequila molecules until they form a fine mist. The mist is delivered outward towards the sculpture, where a delicious cloud forms. From there, the cloud literally rains tequila out into its original, drinkable tequila form. It appears to take a while to gather enough tequila from the cloud, though, so there is a convenient tap on the side that will dispense it without all the rigmarole.

Basically this is a nebulizer which is using tequila and dispersing the output rather than directing it. You’re unlikely to get a large enough gasp for inebriation, but technically there is an opportunity a risk here of becoming second-hand drunk.

The installing is an effort by the Mexican Tourism Board to encourage Germans to take a break from the rain in favor of visiting sunny Mexico, we’d have to say that the effort seems to be a success. Once there, hopefully any visitors will be able to enjoy a perfect margarita or two as well.

File Format Posters

It’s not uncommon for hackers to have a particular delectation for unusual interior decoration. Maybe it’s a Nixie tube clock, or a vacuum fluorescent display reading out the latest tweets from a favorite chatbot. If this sounds like your living room already, perhaps you’d like some of these file format posters to adorn your walls.

The collection of images includes all kinds of formats — GIF, ZIP and WAV are all represented, but it even gets into some real esoterica — DOLphin format executables are here if you’re a total GameCube fanatic. Each poster breaks down the format into parts, such as the header, metadata and descriptor sections, and come in a variety of formats themselves — most available in SVG, PDF and PNG.

If we’re totally honest, these aren’t all designed for hanging on your wall as-is — we’d consider putting some work into to optimize the color palettes and layouts before putting these to print. But regardless, they’re an excellent visual representation of data structures that you might find particularly useful if you need to do some reverse engineering down the track.

If you still have wall space available after seeing this, here’s the electronic reference poster that should fill it.

[Thanks to JD for the tip!]

Two-Piece Boxes Thanks to Laser-Cut Flex Hinges

It sounds like a challenge from a [Martin Gardner] math puzzle from the Scientific American of days gone by: is it possible to build a three-dimensional wooden box with only two surfaces? It turns out it is, if you bend the rules and bend the wood to make living hinge boxes with a laser cutter.

[Martin Raynsford] clearly wasn’t setting out to probe the limits of topology with these boxes, but they’re a pretty neat trick nonetheless. The key to these boxes is the narrow to non-existent kerf left by a laser cutter that makes interference fits with wood a reality. [Martin]’s design leverages the slot and tab connection we’re used to seeing in laser-cut boxes, but adds a living flex-hinge to curve each piece of plywood into a U-shape. The two pieces are then nested together like those old aluminum hobby enclosures from Radio Shack. His GitHub has OpenSCAD scripts to parametrically create two different styles of two-piece boxes so you can scale it up or (somewhat) down according to your needs. There’s also a more traditional three-piece box, and any of them might be a great choice for a control panel or small Arduino enclosure. And as a bonus, the flex-hinge provides ventilation.

Need slots and tabs for boxes but you’re more familiar with FreeCAD? These parametric scripts will get you started, and we’ll bet you can port the flex-hinge bit easily, too.